設(shè)集合W是滿(mǎn)足下列兩個(gè)條件的無(wú)窮數(shù)列{an}的集合:①, ②.其中,是與無(wú)關(guān)的常數(shù).

 (Ⅰ)若{}是等差數(shù)列,是其前項(xiàng)的和,,證明:;

 (Ⅱ)設(shè)數(shù)列{}的通項(xiàng)為,且,求的取值范圍;

(Ⅲ)設(shè)數(shù)列{}的各項(xiàng)均為正整數(shù),且.證明.

 

【答案】

(Ⅰ)見(jiàn)解析(Ⅱ)M≥7(Ⅲ)見(jiàn)解析

【解析】解:(Ⅰ)設(shè)等差數(shù)列{}的公差是d,則,解得,

所以          (2分)

=-1<0

適合條件①;

所以當(dāng)n=4或5時(shí),取得最大值20,即≤20,適合條件②

綜上,                  (4分)

(Ⅱ)因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012111915373073828880/SYS201211191538137695882673_DA.files/image010.png">,所以當(dāng)n≥3時(shí),,此時(shí)數(shù)列{bn}單調(diào)遞減;當(dāng)n=1,2時(shí),,即b1<b2<b3,因此數(shù)列{bn}中的最大項(xiàng)是b3=7

所以M≥7               (8分)

(Ⅲ) 假設(shè)存在正整數(shù)k,使得成立

由數(shù)列{}的各項(xiàng)均為正整數(shù),可得,即

因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012111915373073828880/SYS201211191538137695882673_DA.files/image017.png">,所以

因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012111915373073828880/SYS201211191538137695882673_DA.files/image020.png">

……………………依次類(lèi)推,可得

設(shè)

這顯然與數(shù)列{}的各項(xiàng)均為正整數(shù)矛盾!

所以假設(shè)不成立,即對(duì)于任意n∈N*,都有成立.          ( 14分)

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)集合W是滿(mǎn)足下列兩個(gè)條件的無(wú)窮數(shù)列{an}的集合:①
an+an+22
an+1
;②an≤M,其中n∈N*,M是與n無(wú)關(guān)的常數(shù).
(1)若{an}是等差數(shù)列,Sn是其前n項(xiàng)的和,a3=4,S3=18,證明:{Sn}∈W
(2)設(shè)數(shù)列{bn}的通項(xiàng)為bn=5n-2n,且{bn}∈W,求M的取值范圍;
(3)設(shè)數(shù)列{cn}的各項(xiàng)均為正整數(shù),且{cn}∈W,證明:cn<cn+1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)集合W是滿(mǎn)足下列兩個(gè)條件的無(wú)窮數(shù)列{an}的集合:①對(duì)任意n∈N+,
an+an+22
≤an+1,恒成立;②對(duì)任意n∈N+,存在與n無(wú)關(guān)的常數(shù)M,使an≤M恒成立.
(Ⅰ)若{an}是等差數(shù)列,Sn是其前n項(xiàng)的和,且a3=4,S3=18,試探究數(shù)列{Sn}與集合W之間的關(guān)系;
(Ⅱ)設(shè)數(shù)列{bn}的通項(xiàng)公式為bn=5n-2n,且{bn}∈W,求M的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)集合W是滿(mǎn)足下列兩個(gè)條件的無(wú)窮數(shù)列{an}的集合:①
an+an+22
≤an+1,②an≤M.其中n∈N+,M是與n無(wú)關(guān)的常數(shù).
(1)設(shè)數(shù)列{bn}的通項(xiàng)為bn=5n-2n,證明:{bn}∈W;
(2)若{an}是等差數(shù)列,Sn是其前n項(xiàng)的和,a4=2,S4=20,證明:{Sn}∈W并求M的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•莆田模擬)設(shè)集合W是滿(mǎn)足下列兩個(gè)條件的無(wú)窮數(shù)列{an}的集合:①
an+an+2
2
an+1
;②an≤M,其中n∈N*,M是與n無(wú)關(guān)的常數(shù).現(xiàn)給出下列的四個(gè)無(wú)窮數(shù)列:(1)an=2n-n2;(2)an=3n-2n;(3)an=2n;(4)an=3-(
1
3
)n
,寫(xiě)出上述所有屬于集合W的序號(hào)
(1)(4)
(1)(4)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)集合W是滿(mǎn)足下列兩個(gè)條件的無(wú)窮數(shù)列{an}的集合:①
an+an+2
2
an+1
②an≤M,其中n∈N*,M是與n無(wú)關(guān)的常數(shù)
(1)若{an}是等差數(shù)列,Sn是其前n項(xiàng)的和,a3=4,S3=18,試探究{Sn}與集合W之間的關(guān)系;
(2)設(shè)數(shù)列{bn}的通項(xiàng)為bn=5n-2n,且{bn}∈W,M的最小值為m,求m的值;
(3)在(2)的條件下,設(shè)Cn=
1
5
[bn+(m-5)n]+
2
,求證:數(shù)列{Cn}中任意不同的三項(xiàng)都不能成為等比數(shù)列.

查看答案和解析>>

同步練習(xí)冊(cè)答案