設(shè)f(x)=x2+(a+1)x+b是定義在區(qū)間[b-4,b]上的偶函數(shù),則點(diǎn)(a,b)位于(  )
分析:由偶函數(shù)定義域關(guān)于原點(diǎn)對稱可知b-4=-b可求b,結(jié)合f(x)=x2+(a+1)x+2為偶函數(shù)可求a,即可判斷
解答:解:由偶函數(shù)定義域關(guān)于原點(diǎn)對稱可知b-4=-b
∴b=2,函數(shù)的定義域?yàn)閇-2,2],
∵f(x)=x2+(a+1)x+2為偶函數(shù)
∴f(-x)=f(x)
∴x2+(a+1)x+2=x2-(a+1)x+2
∴a+1=0即a=-1
∴點(diǎn)(-1,2)為第二象限角
故選B
點(diǎn)評:本題主要考查了偶函數(shù)的定義域關(guān)于原點(diǎn)對稱及偶函數(shù)的定義的應(yīng)用,屬于基礎(chǔ)試題
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)f(x)=x2-4x+m,g(x)=x+
4
x
在區(qū)間D=[1,3]上,滿足:對于任意的a∈D,存在實(shí)數(shù)x0∈D,使得f(x0)≤f(a),g(x0)≤g(a)且g(x0)=f(x0);那么在D=[1,3]上f(x)的最大值是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)f(x)=
x2,x∈[0,1]
1
x
,x∈[1,e2]
(其中e為自然對數(shù)的底數(shù)),則
e2
0
f(x)dx
的值為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)f(x)=
x2,x∈[0,1]
2-x,x∈(1,2]
,函數(shù)圖象與x軸圍成封閉區(qū)域的面積為( 。
A、
3
4
B、
4
5
C、
5
6
D、
6
7

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)f(x)=x2+px+q,滿足f(1)=f(2)=0,求f(x)的表達(dá)式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)集合A={x|f(x)=x},B={x|f[f(x)]=x}.
(1)設(shè)f(x)=x2-x-3,求集合A與B;
(2)設(shè)f(x)=x2-(2a-1)x+a2(常數(shù)a∈R),求證:A=B.
(3)猜測集合A與B的關(guān)系并給予證明.

查看答案和解析>>

同步練習(xí)冊答案