已知sinx+2cosx=-
5
,則tanx=(  )
A、
1
2
B、2
C、-
1
2
D、-2
考點:同角三角函數(shù)基本關(guān)系的運用
專題:三角函數(shù)的求值
分析:把已知的等式兩邊平方,化為關(guān)于sinx,cosx的齊次式,然后轉(zhuǎn)化為關(guān)于tanx的方程得答案.
解答: 解:∵sinx+2cosx=-
5
,
∴(sinx+2cosx)2=5,即sin2x+4sinxcosx+4cos2x=5,
sin2x+4sinxcosx+4cos2x
sin2x+cos2x
=5
,
tan2x+4tanx+4
tan2x+1
=5
,解得:tanx=
1
2

故選:A.
點評:本題考查了同角三角函數(shù)基本關(guān)系式的應用,考查了數(shù)學轉(zhuǎn)化思想方法,是中檔題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

已知正六邊形ABCDEF的邊長為2,求以A、D為焦點且經(jīng)過另外四點的橢圓的標準方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

某水產(chǎn)試驗廠實行某種魚的人工孵化,10000個卵能孵化出8513尾魚苗.根據(jù)概率的統(tǒng)計定義解答下列問題:
(1)求這種魚卵的孵化概率(孵化率);
(2)30000個魚卵大約能孵化多少尾魚苗?
(3)要孵化5000尾魚苗,大概得準備多少魚卵?(精確到百位)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在復數(shù)范圍內(nèi),方程x2-2x+2=0的兩個根是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在△ABC中,∠A、∠B、∠C的對邊分別為a、b、c,已知tanA+tanc=
5
4
(1-tanAtanC).
(1)求sinB的值;
(2)若△ABC的面積為4,求BA•BC的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

求證:
(1)2(1-sinα)(1+cosα)=(1-sinα+cosα)2
(2)sin2α+sin2β-sin2α•sin2β+cos2αcos2β=1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

近年來,我國機動車擁有量呈現(xiàn)快速增加的趨勢,可與之配套的基礎(chǔ)設(shè)施建設(shè)速度相對遲緩,交通擁堵問題已經(jīng)成為制約城市發(fā)展的重要因素,為了解某市的交通狀況,現(xiàn)對其6條道路進行評估,得分分別為5、6、7、8、9、10規(guī)定評估的平均得分與全市的總體交通狀況等級如下表:
評估的平均得分[0,6][6,8][8,10]
全市的總體交通不合格合格優(yōu)秀
(1)求本次評估的平均得分,并參照上表估計該市的總體交通狀況等級.
(2)用簡單隨機抽樣方法從6條道路中抽取2條,它們的得分組成一個樣本,求該樣本的平均數(shù)與總體的平均數(shù)之差的絕對值不超過0.5的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

函數(shù)y=
3-x2
+
9
|x|+1
( 。
A、只是偶函數(shù)
B、只是奇函數(shù)
C、既是偶函數(shù),又是奇函數(shù)
D、是非奇非偶函數(shù)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知三個正數(shù)a,b,c滿足:2a≤b+c≤4a,-a≤b-c≤a,給出以下數(shù)值:①1;②e;③3;④π;⑤4
則其中可以作為
b
c
+
c
b
取值范圍的是
 
(填上所有正確命題的序號)

查看答案和解析>>

同步練習冊答案