【題目】在直角坐標(biāo)系 中,直線 的參數(shù)方程為 為參數(shù)).再以原點(diǎn)為極點(diǎn),以 正半軸為極軸建立極坐標(biāo)系,并使得它與直角坐標(biāo)系 有相同的長度單位.在該極坐標(biāo)系中圓 的方程為
(1)求圓 的直角坐標(biāo)方程;
(2)設(shè)圓 與直線 交于點(diǎn) 、 ,若點(diǎn) 的坐標(biāo)為 ,求 的值.

【答案】
(1)解:

(2)解:直線 的參數(shù)方程代入圓C方程得

【解析】(1)由題意利用極坐標(biāo)和直角坐標(biāo)的互化關(guān)系,兩邊同時(shí)平方同時(shí)乘以 ρ構(gòu)造或拼湊出,再利用互化公式求出圓的標(biāo)準(zhǔn)方程。(2)先驗(yàn)證點(diǎn)M在直線l上,由已知點(diǎn)M寫出l的參數(shù)方程,再將此參數(shù)方程代入圓的直角坐標(biāo)方程中得到關(guān)于t的一元二次方程,根據(jù)韋達(dá)定理以及直線的參數(shù)方程的幾何含義求出 | M A | + | M B | 的值。

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=x2+2x+a,g(x)=lnx﹣2x,如果存在 ,使得對(duì)任意的 ,都有f(x1)≤g(x2)成立,則實(shí)數(shù)a的取值范圍是

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù))是定義在上的奇函數(shù).

(Ⅰ)求的值;

(Ⅱ)求函數(shù)的值域

(Ⅲ)當(dāng)時(shí), 恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】把函數(shù) 的圖象上所有點(diǎn)的橫坐標(biāo)變?yōu)樵瓉淼?倍(縱坐標(biāo)不變),再把所得圖象上所有點(diǎn)向左平移 個(gè)單位長度,得到圖象的函數(shù)解析式為( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)
(1)討論函數(shù) 的極值;
(2)當(dāng) 時(shí), ,求 的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某同學(xué)用“描點(diǎn)法”畫函數(shù)在區(qū)間上的圖象時(shí),列表并填入了部分數(shù)據(jù),如下表:

(1)請(qǐng)將上表數(shù)據(jù)補(bǔ)充完整,并在給出的直角坐標(biāo)系中,畫出在區(qū)間上的圖象;

(2)利用函數(shù)的圖象,直接寫出函數(shù)上的單調(diào)遞增區(qū)間;

(3)將圖象上所有點(diǎn)向左平移個(gè)單位長度,得到的圖象,若

圖象的一個(gè)對(duì)稱中心為,求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某淘寶商城在2017年前7個(gè)月的銷售額(單位:萬元)的數(shù)據(jù)如下表,已知具有較好的線性關(guān)系.

月份

銷售額

(1)求關(guān)于的線性回歸方程;

(2)分析該淘寶商城2017年前7個(gè)月的銷售額的變化情況,并預(yù)測(cè)該商城8月份的銷售額.

附:回歸直線的斜率和截距的最小二乘估計(jì)公式分別為:

,.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列給出的輸入語句、輸出語句和賦值語句:

1輸出語句INPUT ,b,c

2輸入語句INPUT =3

3賦值語句3=A

4賦值語句A=B=C

則其中正確的個(gè)數(shù)是( )

A0B1C2D3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在無窮數(shù)列中,,對(duì)于任意,都有,設(shè),記使得成立的的最大值為

)設(shè)數(shù)列,,,,,寫出,的值.

)若為等比數(shù)列,且,求的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案