【題目】某地區(qū)的農(nóng)產(chǎn)品A第x天(1≤x≤20,x∈N*)的銷售價(jià)格p=50﹣|x﹣6|(元∕百斤),一農(nóng)戶在第x天(1≤x≤20,x∈N*)農(nóng)產(chǎn)品A的銷售量q=a+|x﹣8|(百斤)(a為常數(shù)),且該農(nóng)戶在第7天銷售農(nóng)產(chǎn)品A的銷售收入為2009元.
(1)求該農(nóng)戶在第10天銷售農(nóng)產(chǎn)品A的銷售收入是多少?
(2)這20天中該農(nóng)戶在哪一天的銷售收入最大?為多少?

【答案】
(1)解:由已知第7天的銷售價(jià)格p=50﹣|x﹣6|=50﹣|7﹣6|=49,銷售量q=a+|x﹣8|=a+|7﹣8|=a+1.

∴第7天的銷售收入W7=pq=49×(a+1)=2009(元).解得,a=40;

所以,第10天的銷售收入為W10=p10q10=46×42=1932(元).


(2)解:設(shè)第x天的銷售收入為Wx,則

當(dāng)1≤x≤6時(shí), (當(dāng)且僅當(dāng)x=2時(shí)取等號(hào)),∴當(dāng)x=2時(shí)有最大值W2=2116;

當(dāng)8≤x≤20時(shí), (當(dāng)且僅當(dāng)x=12時(shí)取等號(hào)),∴當(dāng)x=12時(shí)有最大值W12=1936;

由于W2>W(wǎng)7>W(wǎng)12,所以,第2天該農(nóng)戶的銷售收入最大.


【解析】(1)第7天的銷售價(jià)格p=50﹣|x﹣6|=50﹣|7﹣6|=49,銷售量q=a+|x﹣8|=a+|7﹣8|=a+1,第7天的銷售收入為W7=pq=2009,可得到a=40,(2)設(shè)第x天的銷售收入為Wx,表示出Wx,在分段函數(shù)的各個(gè)區(qū)間內(nèi)找到收入最大的值.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知復(fù)數(shù)Z=(m2+5m+6)+(m2﹣2m﹣15)i,當(dāng)實(shí)數(shù)m為何值時(shí):
(1)Z為實(shí)數(shù);
(2)Z為純虛數(shù);
(3)復(fù)數(shù)Z對(duì)應(yīng)的點(diǎn)Z在第四象限.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在空間直角坐標(biāo)系中有直三棱柱ABC﹣A1B1C1 , CA=CC1=2CB,則直線BC1與直線AB1夾角的余弦值為( )

A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某城市上年度電價(jià)為0.80元/千瓦時(shí),年用電量為a千瓦時(shí).本年度計(jì)劃將電價(jià)降到0.55元/千瓦時(shí)~0.75元/千瓦時(shí)之間,而居民用戶期望電價(jià)為0.40元/千瓦時(shí)(該市電力成本價(jià)為0.30元/千瓦時(shí))經(jīng)測(cè)算,下調(diào)電價(jià)后,該城市新增用電量與實(shí)際電價(jià)和用戶期望電價(jià)之差成反比,比例系數(shù)為0.2a.試問當(dāng)?shù)仉妰r(jià)最低為多少時(shí),可保證電力部門的收益比上年度至少增加20%.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù) 為R上的單調(diào)函數(shù),則實(shí)數(shù)a的取值范圍是

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,DC⊥平面BCEF,且四邊形ABCD為矩形,四邊形BCEF為直角梯形,BF∥CE,BC⊥CE,DC=CE=4,BC=BF=2.

(1)求證:AF∥平面CDE;
(2)求平面AEF與平面ABCD所成銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,四棱錐P﹣ABCD的底面為直角梯形,∠ADC=∠DCB=90°,AD=1,BC=3,PC=CD=2,PC⊥底面ABCD,E為AB的中點(diǎn).

(1)求證:平面PDE⊥平面PAC;
(2)求直線PC與平面PDE所成的角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系xOy中,設(shè)動(dòng)點(diǎn)P到定點(diǎn)F(1,0)的距離與到定直線l:x=﹣1的距離相等,記P的軌跡為Γ.又直線AB的一個(gè)方向向量 且過點(diǎn)(1,0),AB與Γ交于A、B兩點(diǎn),求|AB|的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知關(guān)于x的二次方程x2+2mx+2m+1=0.
(Ⅰ)若方程有兩根,其中一根在區(qū)間(﹣1,0)內(nèi),另一根在區(qū)間(1,2)內(nèi),求m 的取值范圍.
(Ⅱ)若方程兩根均在區(qū)間(0,1)內(nèi),求m的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案