設(shè)是滿足不等式的自然數(shù)的個(gè)數(shù),其中
(Ⅰ)求的值;
(Ⅱ) 求的解析式;
(Ⅲ)記,令,試比較的大小.

(Ⅰ)
(Ⅱ)
(Ⅲ)當(dāng)n=2,4時(shí),;當(dāng)n=3時(shí),;當(dāng)n=1或時(shí);---14分

(Ⅰ)當(dāng)時(shí),原不等式即,解得,
   ∴ 即------------------------------2分
(Ⅱ)原不等式等價(jià)于
……………………………………………..4分
………………………………………………………..6分
……8分
(Ⅲ)∵
n=1時(shí),;n=2時(shí), 
n=3時(shí),;n=4時(shí),
n=5時(shí),;n=6時(shí),…………………………………………9分
猜想:時(shí) 下面用數(shù)學(xué)歸納法給出證明
①當(dāng)n=5時(shí),,已證…………………………………………………….10分
②假設(shè)時(shí)結(jié)論成立即
那么n=k+1時(shí),

范圍內(nèi),恒成立,則,即
由①②可得,猜想正確,即時(shí),…………………………………..  13分
綜上所述:當(dāng)n=2,4時(shí),;當(dāng)n=3時(shí),;當(dāng)n=1或時(shí);---14分
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

為常數(shù),且
(Ⅰ)求對(duì)所有的實(shí)數(shù)成立的充要條件(用表示);
(Ⅱ)設(shè)為兩實(shí)數(shù),,若,求證:在區(qū)間上的單調(diào)增區(qū)間的長(zhǎng)度和為(閉區(qū)間的長(zhǎng)度定義為)。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)函數(shù)
(1)求的單調(diào)增區(qū)間和單調(diào)減區(qū)間;
(2)若當(dāng)時(shí)(其中e=2.71828…),不等式恒成立,求實(shí)數(shù)m的取值范圍;
(3)若關(guān)于x的方程上恰有兩個(gè)相異的實(shí)根,求實(shí)數(shù)a的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

對(duì)于定義在區(qū)間D上的函數(shù),若存在閉區(qū)間和常數(shù),使得對(duì)任意,都有,且對(duì)任意∈D,當(dāng)時(shí),恒成立,則稱函數(shù)為區(qū)間D上的“平底型”函數(shù).
(Ⅰ)判斷函數(shù)是否為R上的“平底型”函數(shù)?   并說明理由;
(Ⅱ)設(shè)是(Ⅰ)中的“平底型”函數(shù),k為非零常數(shù),若不等式 對(duì)一切R恒成立,求實(shí)數(shù)的取值范圍;
(Ⅲ)若函數(shù)是區(qū)間上的“平底型”函數(shù),求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

記函數(shù),,它們定義域的交集為,若對(duì)任意的,,則稱是集合的元素.
(1)判斷函數(shù)是否是的元素;
(2)設(shè)函數(shù),求的反函數(shù),并判斷是否是的元素;

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

.已知正弦波圖形如下:

此圖可以視為函數(shù)y=Asin(ωx+)(A>0,ω>0,||<)圖象的一部分,試求出其解析式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)
(1)當(dāng)時(shí),求該函數(shù)的定義域和值域;
(2)如果在區(qū)間上恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)(其中
(I)求函數(shù)f(x)的反函數(shù)
(II)設(shè),求函數(shù)g(x)最小值及相應(yīng)的x值;
(III)若不等式對(duì)于區(qū)間上的每一個(gè)x值都成立,求實(shí)數(shù)m的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

在2009年底的哥本哈根大會(huì)上,中國(guó)向全世界承諾,到2020年底,中國(guó)的炭排放將降至2009年炭排放量,目前我國(guó)的減排手段有兩種,第一種是通過引進(jìn)新技術(shù),新工藝使得每年的炭排放比上一年炭排放總量均減少個(gè)百分點(diǎn),第二種是通過教育與宣傳使得全體國(guó)民具有節(jié)能減排的意識(shí),進(jìn)而減少炭排放。
(1):若通過第二種方式的減排量每年均是一個(gè)常數(shù),求2011年我國(guó)的炭排放量
(2):若全體國(guó)民齊心協(xié)力,使第二種方式的減排量能夠占上年的炭排放總量的個(gè)百分點(diǎn),要保證完成減排目標(biāo),求滿足的范圍。(已知,,

查看答案和解析>>

同步練習(xí)冊(cè)答案