【題目】已知函數(shù),對(duì)稱(chēng)軸為,且.

(1)求的值;

(2)求函數(shù)上的最值.

(3)若函數(shù),且方程有三個(gè)解,求的取值范圍.

【答案】(1).

(2),

(3)

【解析】

1)由對(duì)稱(chēng)軸可得,根據(jù),可得;

2)由(1)可得上單調(diào)遞減,上單調(diào)遞增,進(jìn)而求得最值;

3)由題可得,代入方程可得,設(shè),整理得到,由于方程有三個(gè)解,可轉(zhuǎn)化為有兩個(gè)根,一個(gè)在區(qū)間內(nèi),另一個(gè)在內(nèi),列出不等關(guān)系求解即可

解:(1)由題,對(duì)稱(chēng)軸為,,

因?yàn)?/span>,所以

2)由(1)可得,因?yàn)閷?duì)稱(chēng)軸為,

所以上單調(diào)遞減,上單調(diào)遞增,

所以,

3)由題,,定義域?yàn)?/span>,

因?yàn)榉匠?/span>有三個(gè)解,有三個(gè)解,

設(shè),則方程為,,

當(dāng)時(shí),;當(dāng)時(shí),,

所以有兩個(gè)根,一個(gè)在區(qū)間內(nèi),另一個(gè)在內(nèi),

設(shè),

所以,解得,

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓 的左右焦點(diǎn)分別為,,離心率為.若點(diǎn)為橢圓上一動(dòng)點(diǎn),的內(nèi)切圓面積的最大值為.

(1)求橢圓的標(biāo)準(zhǔn)方程;

(2)過(guò)點(diǎn)作斜率為的動(dòng)直線(xiàn)交橢圓于兩點(diǎn),的中點(diǎn)為,在軸上是否存在定點(diǎn),使得對(duì)于任意值均有,若存在,求出點(diǎn)的坐標(biāo),若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】定義在R上的函數(shù)f(x),滿(mǎn)足當(dāng)x>0時(shí),f(x)>1,且對(duì)任意的x,y,有,f(1)2,.

1)求f(0)的值;

2)求證:對(duì)任意x,都有f(x)>0;

3)解不等式f(32x)>4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知拋物線(xiàn)經(jīng)過(guò)兩點(diǎn),與軸的另一個(gè)交點(diǎn)為,頂點(diǎn)為,連結(jié)

1)求該拋物線(xiàn)的表達(dá)式;

2)點(diǎn)為該拋物線(xiàn)上的一動(dòng)點(diǎn)(與點(diǎn)、不重合),設(shè)點(diǎn)的橫坐標(biāo)為.當(dāng)點(diǎn)在直線(xiàn)的下方運(yùn)動(dòng)時(shí),求的面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)是定義在(2,2)上的奇函數(shù).當(dāng)x(2,0)時(shí),f(x)=-loga(x)loga(2x),其中a>1.

1)求函數(shù)f(x)的零點(diǎn).

2)若t(02),判斷函數(shù)f(x)在區(qū)間(0,t]上是否有最大值和最小值.若有,請(qǐng)求出最大值和最小值,并說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】給出下列五個(gè)結(jié)論,其中正確的結(jié)論是(

A.函數(shù)的最大值為

B.已知函數(shù))在上是減函數(shù)則a的取值范圍是

C.在同一直角坐標(biāo)系中,函數(shù)的圖象關(guān)于y軸對(duì)稱(chēng)

D.在同一直角坐標(biāo)系中,函數(shù)的圖象關(guān)于直線(xiàn)對(duì)稱(chēng)

E.已知定義在R上的奇函數(shù)內(nèi)有1010個(gè)零點(diǎn),則函數(shù)的零點(diǎn)個(gè)數(shù)為2021

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為迎接年北京冬季奧運(yùn)會(huì),普及冬奧知識(shí),某校開(kāi)展了“冰雪答題王”冬奧知識(shí)競(jìng)賽活動(dòng).現(xiàn)從參加冬奧知識(shí)競(jìng)賽活動(dòng)的學(xué)生中隨機(jī)抽取了名學(xué)生,將他們的比賽成績(jī)(滿(mǎn)分為分)分為組:,,,,,得到如圖所示的頻率分布直方圖.

(Ⅰ)求的值;

(Ⅱ)記表示事件“從參加冬奧知識(shí)競(jìng)賽活動(dòng)的學(xué)生中隨機(jī)抽取一名學(xué)生,該學(xué)生的比賽成績(jī)不低于分”,估計(jì)的概率;

(Ⅲ)在抽取的名學(xué)生中,規(guī)定:比賽成績(jī)不低于分為“優(yōu)秀”,比賽成績(jī)低于分為“非優(yōu)秀”.請(qǐng)將下面的列聯(lián)表補(bǔ)充完整,并判斷是否有的把握認(rèn)為“比賽成績(jī)是否優(yōu)秀與性別有關(guān)”?

優(yōu)秀

非優(yōu)秀

合計(jì)

男生

女生

合計(jì)

參考公式及數(shù)據(jù):,

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某地隨著經(jīng)濟(jì)的發(fā)展,居民收入逐年增長(zhǎng),下表是該地一建設(shè)銀行連續(xù)五年的儲(chǔ)蓄存款(年底余額),如下表1

年份x

2011

2012

2013

2014

2015

儲(chǔ)蓄存款y(千億元)

5

6

7

8

10

為了研究計(jì)算的方便,工作人員將上表的數(shù)據(jù)進(jìn)行了處理, 得到下表2

時(shí)間代號(hào)t

1

2

3

4

5

z

0

1

2

3

5

(Ⅰ)求z關(guān)于t的線(xiàn)性回歸方程;

(Ⅱ)用所求回歸方程預(yù)測(cè)到2020年年底,該地儲(chǔ)蓄存款額可達(dá)多少?

(附:對(duì)于線(xiàn)性回歸方程,其中

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的左、右焦點(diǎn)分別為,過(guò)的直線(xiàn)與橢圓交于的兩點(diǎn),且軸,若為橢圓上異于的動(dòng)點(diǎn)且,則該橢圓的離心率為___.

查看答案和解析>>

同步練習(xí)冊(cè)答案