【題目】已知函數(shù),對(duì)稱(chēng)軸為,且.
(1)求的值;
(2)求函數(shù)在上的最值.
(3)若函數(shù),且方程有三個(gè)解,求的取值范圍.
【答案】(1).
(2),
(3)
【解析】
(1)由對(duì)稱(chēng)軸可得,根據(jù),可得;
(2)由(1)可得在上單調(diào)遞減,在上單調(diào)遞增,進(jìn)而求得最值;
(3)由題可得,代入方程可得,設(shè),整理得到,由于方程有三個(gè)解,可轉(zhuǎn)化為有兩個(gè)根,一個(gè)在區(qū)間內(nèi),另一個(gè)在內(nèi),列出不等關(guān)系求解即可
解:(1)由題,對(duì)稱(chēng)軸為,則,
因?yàn)?/span>,所以
(2)由(1)可得,因?yàn)閷?duì)稱(chēng)軸為,
所以在上單調(diào)遞減,在上單調(diào)遞增,
所以,
(3)由題,,定義域?yàn)?/span>,
因?yàn)榉匠?/span>有三個(gè)解,即有三個(gè)解,
設(shè),則方程為,即,
當(dāng)時(shí),;當(dāng)時(shí),,
所以有兩個(gè)根,一個(gè)在區(qū)間內(nèi),另一個(gè)在內(nèi),
設(shè),
所以,解得,
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓 的左右焦點(diǎn)分別為,,離心率為.若點(diǎn)為橢圓上一動(dòng)點(diǎn),的內(nèi)切圓面積的最大值為.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)過(guò)點(diǎn)作斜率為的動(dòng)直線(xiàn)交橢圓于兩點(diǎn),的中點(diǎn)為,在軸上是否存在定點(diǎn),使得對(duì)于任意值均有,若存在,求出點(diǎn)的坐標(biāo),若不存在,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】定義在R上的函數(shù)f(x),滿(mǎn)足當(dāng)x>0時(shí),f(x)>1,且對(duì)任意的x,y,有,f(1)=2,且.
(1)求f(0)的值;
(2)求證:對(duì)任意x,都有f(x)>0;
(3)解不等式f(32x)>4.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知拋物線(xiàn)經(jīng)過(guò),兩點(diǎn),與軸的另一個(gè)交點(diǎn)為,頂點(diǎn)為,連結(jié).
(1)求該拋物線(xiàn)的表達(dá)式;
(2)點(diǎn)為該拋物線(xiàn)上的一動(dòng)點(diǎn)(與點(diǎn)、不重合),設(shè)點(diǎn)的橫坐標(biāo)為.當(dāng)點(diǎn)在直線(xiàn)的下方運(yùn)動(dòng)時(shí),求的面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)是定義在(-2,2)上的奇函數(shù).當(dāng)x∈(-2,0)時(shí),f(x)=-loga(-x)-loga(2+x),其中a>1.
(1)求函數(shù)f(x)的零點(diǎn).
(2)若t∈(0,2),判斷函數(shù)f(x)在區(qū)間(0,t]上是否有最大值和最小值.若有,請(qǐng)求出最大值和最小值,并說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】給出下列五個(gè)結(jié)論,其中正確的結(jié)論是( )
A.函數(shù)的最大值為
B.已知函數(shù)(且)在上是減函數(shù)則a的取值范圍是
C.在同一直角坐標(biāo)系中,函數(shù)與的圖象關(guān)于y軸對(duì)稱(chēng)
D.在同一直角坐標(biāo)系中,函數(shù)與的圖象關(guān)于直線(xiàn)對(duì)稱(chēng)
E.已知定義在R上的奇函數(shù)在內(nèi)有1010個(gè)零點(diǎn),則函數(shù)的零點(diǎn)個(gè)數(shù)為2021
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】為迎接年北京冬季奧運(yùn)會(huì),普及冬奧知識(shí),某校開(kāi)展了“冰雪答題王”冬奧知識(shí)競(jìng)賽活動(dòng).現(xiàn)從參加冬奧知識(shí)競(jìng)賽活動(dòng)的學(xué)生中隨機(jī)抽取了名學(xué)生,將他們的比賽成績(jī)(滿(mǎn)分為分)分為組:,,,,,,得到如圖所示的頻率分布直方圖.
(Ⅰ)求的值;
(Ⅱ)記表示事件“從參加冬奧知識(shí)競(jìng)賽活動(dòng)的學(xué)生中隨機(jī)抽取一名學(xué)生,該學(xué)生的比賽成績(jī)不低于分”,估計(jì)的概率;
(Ⅲ)在抽取的名學(xué)生中,規(guī)定:比賽成績(jī)不低于分為“優(yōu)秀”,比賽成績(jī)低于分為“非優(yōu)秀”.請(qǐng)將下面的列聯(lián)表補(bǔ)充完整,并判斷是否有的把握認(rèn)為“比賽成績(jī)是否優(yōu)秀與性別有關(guān)”?
優(yōu)秀 | 非優(yōu)秀 | 合計(jì) | |
男生 | |||
女生 | |||
合計(jì) |
參考公式及數(shù)據(jù):,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某地隨著經(jīng)濟(jì)的發(fā)展,居民收入逐年增長(zhǎng),下表是該地一建設(shè)銀行連續(xù)五年的儲(chǔ)蓄存款(年底余額),如下表1:
年份x | 2011 | 2012 | 2013 | 2014 | 2015 |
儲(chǔ)蓄存款y(千億元) | 5 | 6 | 7 | 8 | 10 |
為了研究計(jì)算的方便,工作人員將上表的數(shù)據(jù)進(jìn)行了處理, 得到下表2:
時(shí)間代號(hào)t | 1 | 2 | 3 | 4 | 5 |
z | 0 | 1 | 2 | 3 | 5 |
(Ⅰ)求z關(guān)于t的線(xiàn)性回歸方程;
(Ⅱ)用所求回歸方程預(yù)測(cè)到2020年年底,該地儲(chǔ)蓄存款額可達(dá)多少?
(附:對(duì)于線(xiàn)性回歸方程,其中)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓的左、右焦點(diǎn)分別為,過(guò)的直線(xiàn)與橢圓交于的兩點(diǎn),且軸,若為橢圓上異于的動(dòng)點(diǎn)且,則該橢圓的離心率為___.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com