已知函數(shù)。
(1)當(dāng)時(shí),①求函數(shù)的單調(diào)區(qū)間;②求函數(shù)的圖象在點(diǎn)處的切線方程;
(2)若函數(shù)既有極大值,又有極小值,且當(dāng)時(shí),恒成立,求的取值范圍.
(1)函數(shù)的單調(diào)遞增區(qū)間是:,單調(diào)遞減區(qū)間是:(1,3);(2).
解析試題分析:(1)①:當(dāng)m=2時(shí),可以得到f(x)的具體的表達(dá)式,進(jìn)而求得的表達(dá)式,根據(jù)即可確定f(x)的單調(diào)區(qū)間;②:根據(jù)①中所得的的表達(dá)式,可以得到的值,即切線方程的斜率,在由過(guò)(0,0)即可求得f(x)在(0,0)處的切線方程;(2) f(x)即有極大值,又有極小值,說(shuō)明有兩個(gè)不同的零點(diǎn),在時(shí),恒成立,
說(shuō)明<36恒成立,
即,通過(guò)判斷在[0,4m]上的單調(diào)性,即可求把 用含m的代數(shù)式表示出來(lái),從而建立關(guān)于m的不等式.
(1)當(dāng)m=2時(shí),則 1分
①令,解得x=1或x="3" 2分
∴函數(shù)的單調(diào)遞增區(qū)間是:,單調(diào)遞減區(qū)間是:(1,3) 4分
②∵,∴函數(shù)y=f(x)的圖象在點(diǎn)(0,0)處的切線方程為y=3x 6分;
(2)因?yàn)楹瘮?shù)f(x)既有極大值,又有極小值,則有兩個(gè)不同的根,則有
又 8分
令,依題意:即可.
,,
10分
,又,
∴g(x)最大值為 12分, 13分
∴m的取值范圍為 14分..
考點(diǎn):1、利用導(dǎo)數(shù)求函數(shù)的單調(diào)區(qū)間和切線方程;2、恒成立問(wèn)題的處理方法.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
設(shè)函數(shù).
(1)若在時(shí)有極值,求實(shí)數(shù)的值和的極大值;
(2)若在定義域上是增函數(shù),求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù).
(1)求的單調(diào)區(qū)間;
(2)記為的從小到大的第個(gè)零點(diǎn),證明:對(duì)一切,有.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù).
(1)當(dāng)時(shí),求的單調(diào)區(qū)間;
(2)當(dāng)時(shí),若存在, 使得成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
記函數(shù)fn(x)=a·xn-1(a∈R,n∈N*)的導(dǎo)函數(shù)為f′n(x),已知f′3(2)=12.
(1)求a的值;
(2)設(shè)函數(shù)gn(x)=fn(x)-n2ln x,試問(wèn):是否存在正整數(shù)n使得函數(shù)gn(x)有且只有一個(gè)零點(diǎn)?若存在,請(qǐng)求出所有n的值;若不存在,請(qǐng)說(shuō)明理由;
(3)若實(shí)數(shù)x0和m(m>0且m≠1)滿足=,試比較x0與m的大小,并加以證明.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
設(shè)f(x)=ln(1+x)-x-ax2.
(1)當(dāng)x=1時(shí),f(x)取到極值,求a的值;
(2)當(dāng)a滿足什么條件時(shí),f(x)在區(qū)間[-,-]上有單調(diào)遞增區(qū)間?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
設(shè)函數(shù) .
(1) 當(dāng)時(shí),求函數(shù)的單調(diào)區(qū)間;
(2) 當(dāng)時(shí),求函數(shù)在上的最小值和最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本題滿分12分)已知函數(shù)在處取得極值-2.
(1)求函數(shù)的解析式;
(2)求曲線在點(diǎn)處的切線方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù)()
(1)當(dāng)時(shí),求函數(shù)的極值;(2)當(dāng)時(shí),討論的單調(diào)性。
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com