如圖,拋物線的頂點(diǎn)為坐標(biāo)原點(diǎn),焦點(diǎn)軸上,準(zhǔn)線與圓相切.

(Ⅰ)求拋物線的方程;
(Ⅱ)已知直線和拋物線交于點(diǎn),命題P:“若直線過定點(diǎn),則”,請判斷命題P的真假,并證明。

(Ⅰ)  (Ⅱ)命題P為真命題

解析試題分析:(Ⅰ)依題意,可設(shè)拋物線的方程為,
其準(zhǔn)線的方程為.           
∵準(zhǔn)線與圓相切,
∴所以圓心到直線的距離,解得.
故拋物線的方程為:. 
(Ⅱ)命題P為真命題
因?yàn)橹本和拋物線交于點(diǎn)且過定點(diǎn),所以直線的斜率一定存在
設(shè)直線,交點(diǎn)聯(lián)立拋物線的方程,
 恒成立           
由韋達(dá)定理得        

,所以命題P為真命題 
考點(diǎn):直線與圓錐曲線的綜合問題;恒過定點(diǎn)的直線;拋物線的標(biāo)準(zhǔn)方程.
點(diǎn)評:本題考查了拋物線方程的求法,以及直線與拋物線的位置關(guān)系判斷,做題時要認(rèn)真分析,避免不必要的錯誤.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知拋物線,直線截拋物線C所得弦長為.
(1)求拋物線的方程;
(2)已知是拋物線上異于原點(diǎn)的兩個動點(diǎn),記試求當(dāng)取得最小值時的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知橢圓()過點(diǎn),其左、右焦點(diǎn)分別為,且.
(1)求橢圓的方程;
(2)若是直線上的兩個動點(diǎn),且,則以為直徑的圓是否過定點(diǎn)?請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知點(diǎn)、, 是一個動點(diǎn), 且直線、的斜率之積為.
(1) 求動點(diǎn)的軌跡的方程;
(2) 設(shè), 過點(diǎn)的直線、兩點(diǎn), 若對滿足條件的任意直線, 不等式恒成立, 求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

在直角坐標(biāo)平面內(nèi),以坐標(biāo)原點(diǎn)O為極點(diǎn),x軸的非負(fù)半軸為極軸建立極坐標(biāo)系.已知曲線的參數(shù)方程為,曲線的極坐標(biāo)方程為
(Ⅰ)將曲線的參數(shù)方程化為普通方程;
(Ⅱ)判斷曲線與曲線的交點(diǎn)個數(shù),并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知平面內(nèi)一動點(diǎn)到點(diǎn)的距離與點(diǎn)軸的距離的差等于1.(I)求動點(diǎn)的軌跡的方程;(II)過點(diǎn)作兩條斜率存在且互相垂直的直線,設(shè)與軌跡相交于點(diǎn),與軌跡相交于點(diǎn),求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

拋物線的準(zhǔn)線與軸交于,焦點(diǎn)為,若橢圓、為焦點(diǎn)、且離心率為.                   
(1)當(dāng)時,求橢圓的方程;
(2)若拋物線與直線軸所圍成的圖形的面積為,求拋物線和直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知橢圓()過點(diǎn),其左、右焦點(diǎn)分別為,且.
(1)求橢圓的方程;
(2)若是直線上的兩個動點(diǎn),且,則以為直徑的圓是否過定點(diǎn)?請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知直線過定點(diǎn),動點(diǎn)滿足,動點(diǎn)的軌跡為.
(Ⅰ)求的方程;
(Ⅱ)直線交于兩點(diǎn),以為切點(diǎn)分別作的切線,兩切線交于點(diǎn).
①求證:;②若直線交于兩點(diǎn),求四邊形面積的最大值.

查看答案和解析>>

同步練習(xí)冊答案