(2013•廣州二模)記實數(shù)x1,x2,…,xn中的最大數(shù)為max{x1,x2,…,xn},最小數(shù)為min{x1,x2,…,xn}則max{min{x+1,x2-x+1,-x+6}}=( 。
分析:在同一坐標系中作出三個函數(shù)y=x+1,y=x2-x+1與y=-x+6的圖象,依題意,即可求得max{min{x+1,x2-x+1,-x+6}}.
解答:解:在同一坐標系中作出三個函數(shù)y=x+1,y=x2-x+1與y=-x+6的圖象如圖:
由圖可知,min{x+1,x2-x+1,-x+6}為射線AM,拋物線
ANB
,線段BC,與射線CT的組合體,
顯然,在C點時,y=min{x+1,x2-x+1,-x+6}取得最大值.
解方程組
y=-x+6
y=x+1
得,C(
5
2
,
7
2
),
∴max{min{x+1,x2-x+1,-x+6}}=
7
2

故答案為
7
2

故選D
點評:本題考查函數(shù)的最值及其幾何意義,在同一坐標系中作出三個函數(shù)y=x+1,y=x2-x+1與y=-x+6的圖象是關(guān)鍵,也是難點,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2013•廣州二模)如果函數(shù)f(x)=ln(-2x+a)的定義域為(-∞,1),則實數(shù)a的值為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•廣州二模)(幾何證明選講選做題)
在△BC中,D是邊AC的中點,點E在線段BD上,且滿足BE=
1
3
BD,延長AE交 BC于點F,則
BF
FC
的值為
1
4
1
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•廣州二模)直線y=k(x+1)與圓(x+1)2+y2=1相交于A,B兩點,則|AB|的值為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•廣州二模)在等差數(shù)列{an}中,a1+a2=5,a3=7,記數(shù)列{
1anan+1
}的前n項和為Sn
(1)求數(shù)列{an}的通項公式;
(2)是否存在正整數(shù)m、n,且1<m<n,使得S1、SntSn成等比數(shù)列?若存在,求出所有符合條件的m,n值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•廣州二模)設(shè)an是函數(shù)f(x)=x3+n2x-1(n∈N+)的零點.
(1)證明:0<an<1;
(2)證明:
n
n+1
a1+a2+…+an
3
2

查看答案和解析>>

同步練習(xí)冊答案