【題目】在△ABC中,a,b,c分別為內(nèi)角A,B,C的對邊,且a2=3b2+3c2﹣2 bcsinA,則C的值為(
A.
B.
C.
D.

【答案】B
【解析】解:根據(jù)a2=3b2+3c2﹣2 bcsinA,…① 余弦定理a2=b2+c2﹣2bccosA,…②
由①﹣②可得:2b2+2c2=2 bcsinA﹣2bccosA
化簡:b2+c2= bcsinA﹣bccosA
b2+c2=2bcsin(A﹣ ),
∵b2+c2≥2bc,
∴sin(A﹣ )=1,
∴A= ,
此時(shí)b2+c2=2bc,
故得b=c,即B=C,
∴C= =
故選:B.
【考點(diǎn)精析】根據(jù)題目的已知條件,利用余弦定理的定義的相關(guān)知識可以得到問題的答案,需要掌握余弦定理:;;

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知 中,角 的對邊分別為 ,且 .
(1)求 Δ A B C 的面積;
(2)求 Δ A B C 中最大角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù) = ,其中 ,若存在唯一的整數(shù) ,使得 ,則 的取值范圍是( )
A.[- ,1)
B.[- ,
C.[ ,
D.[ ,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某學(xué)生對函數(shù)的性質(zhì)進(jìn)行研究,得出如下的結(jié)論:

①函數(shù)上單調(diào)遞增,在上單調(diào)遞減;

②點(diǎn)是函數(shù)圖像的一個(gè)對稱中心;

③存在常數(shù),使對一切實(shí)數(shù)均成立;

④函數(shù)圖像關(guān)于直線對稱.其中正確的結(jié)論是__________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】一張坐標(biāo)紙上涂著圓E 及點(diǎn)P(1,0),折疊此紙片,使P與圓周上某點(diǎn)P'重合,每次折疊都會留下折痕,設(shè)折痕與直線EP'交于點(diǎn)M
(1)求 的軌跡 的方程;
(2)直線 C的兩個(gè)不同交點(diǎn)為AB , 且l與以EP為直徑的圓相切,若 ,求△ABO的面積的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形 中, ,點(diǎn) 的中點(diǎn), 為線段 (端點(diǎn)除外)上一動(dòng)點(diǎn).現(xiàn)將 沿 折起,使得平面 平面 .設(shè)直線 與平面 所成角為 ,則 的最大值為( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】以下四個(gè)命題: ①已知隨機(jī)變量X~N(0,σ2),若P(|X|<2)=a,則P(X>2)的值為 ;
②設(shè)a、b∈R,則“l(fā)og2a>log2b”是“2ab>1”的充分不必要條件;
③函數(shù)f(x)= ﹣( x的零點(diǎn)個(gè)數(shù)為1;
④命題p:n∈N,3n≥n2+1,則¬p為n∈N,3n≤n2+1.
其中真命題的序號為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)關(guān)于的一元二次方程

(1)若是從0,1,2,3四個(gè)數(shù)中任取的一個(gè)數(shù), 是從0,1,2三個(gè)數(shù)中任取的一個(gè)數(shù),求上述方程有實(shí)根的概率;

(2)若時(shí)從區(qū)間上任取的一個(gè)數(shù), 是從區(qū)間上任取的一個(gè)數(shù),求上述方程有實(shí)根的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知MOD函數(shù)是一個(gè)求余函數(shù),記MOD(m,n)表示m除以n的余數(shù),例如MOD(8,3)=2.如圖是某個(gè)算法的程序框圖,若輸入m的值為48時(shí),則輸出i的值為(
A.7
B.8
C.9
D.10

查看答案和解析>>

同步練習(xí)冊答案