【題目】在四棱錐P﹣ABCD中,AD∥BC,AD=AB=DC=BC=1,E是PC的中點,面PAC⊥面ABCD.
(1)證明:ED∥面PAB;
(2)若PC=2,PA=,求二面角A﹣PC﹣D的余弦值.
【答案】(Ⅰ)證明過程如解析;(Ⅱ)
【解析】試題分析:(Ⅰ)取PB的中點F,連接AF,EF,由三角形的中位線定理可得四邊形ADEF是平行四邊形.得到DE∥AF,再由線面平行的判定可得ED∥面PAB;(Ⅱ)法一、取BC的中點M,連接AM,由題意證得A在以BC為直徑的圓上,可得AB⊥AC,找出二面角A-PC-D的平面角.求解三角形可得二面角A-PC-D的余弦值.
試題解析:(Ⅰ)證明:取PB的中點F,連接AF,EF.
∵EF是△PBC的中位線,∴EF∥BC,且EF=.
又AD=BC,且AD=,∴AD∥EF且AD=EF,
則四邊形ADEF是平行四邊形.
∴DE∥AF,又DE面ABP,AF面ABP,∴ED∥面PAB
(Ⅱ)法一、取BC的中點M,連接AM,則AD∥MC且AD=MC,
∴四邊形ADCM是平行四邊形,
∴AM=MC=MB,則A在以BC為直徑的圓上.∴AB⊥AC,可得.
過D作DG⊥AC于G,
∵平面PAC⊥平面ABCD,且平面PAC∩平面ABCD=AC,
∴DG⊥平面PAC,則DG⊥PC.
過G作GH⊥PC于H,則PC⊥面GHD,連接DH,則PC⊥DH,
∴∠GHD是二面角A﹣PC﹣D的平面角.
在△ADC中,,連接AE,.
在Rt△GDH中,,
∴,
即二面角A﹣PC﹣D的余弦值
法二、取BC的中點M,連接AM,則AD∥MC,且AD=MC.
∴四邊形ADCM是平行四邊形,
∴AM=MC=MB,則A在以BC為直徑的圓上,
∴AB⊥AC.
∵面PAC⊥平面ABCD,且平面PAC∩平面ABCD=AC,∴AB⊥面PAC.
如圖以A為原點,方向分別為x軸正方向,y軸正方向建立空間直角坐標(biāo)系.
可得,.
設(shè)P(x,0,z),(z>0),依題意有,,
解得.
則,,.
設(shè)面PDC的一個法向量為,
由,取x0=1,得.
為面PAC的一個法向量,且,
設(shè)二面角A﹣PC﹣D的大小為θ,
則有,即二面角A﹣PC﹣D的余弦值.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=4x+a2x+3,a∈R.
(1)當(dāng)a=﹣4時,且x∈[0,2],求函數(shù)f(x)的值域;
(2)若關(guān)于x的方程f(x)=0在(0,+∞)上有兩個不同實根,求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知:橢圓 (a>b>0),過點 , 的直線傾斜角為 ,原點到該直線的距離為 .
(1)求橢圓的方程;
(2)斜率大于零的直線過 與橢圓交于E,F(xiàn)兩點,若 ,求直線EF的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=x3﹣12x.
(1)求f′(1)的值;
(2)求函數(shù)f(x)的單調(diào)區(qū)間.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某城市出租車收費標(biāo)準(zhǔn)如下:①起步價3km(含3km)為10元;②超過3km以外的路程按2元/km收費;③不足1km按1km計費.
(1)試寫出收費y元與x(km)(0<x≤5)之間的函數(shù)關(guān)系式;
(2)若某人乘出租車花了24元錢,求此人乘車?yán)锍蘹km的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知集合A={x|a≤x≤a+4},B={x|x>1 或x<﹣6}.
(1)若A∩B=,求a的取值范圍;
(2)若A∪B=B,求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知復(fù)數(shù)z的實部和虛部都是整數(shù),
(1)若復(fù)數(shù)z為純虛數(shù),且|z﹣1|=|﹣1+i|,求復(fù)數(shù)z;
(2)若復(fù)數(shù)z滿足z+ 是實數(shù),且1<z+ ≤6,求復(fù)數(shù)z.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某商場在近30天內(nèi)每件的銷售價格P(元)與時間t(天)的函數(shù)關(guān)系是P= ,該商場的日銷售量Q=﹣t+40(0<t≤30,t∈N),求這種商品的日銷售金額的最大值,并指出日銷售金額最大的一天是30天中的第幾天.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com