變量x與變量y,w,z的對應關系如下表所示:
|
科目:高中數(shù)學 來源:設計必修一數(shù)學(人教A版) 人教A版 題型:044
17世紀,科學家們致力于運動的研究,如計算天體的位置,遠距離航海中對經度和緯度的測量,炮彈的速度對于高度和射程的影響等.諸如此類的問題都需要探究兩個變量之間的關系,并根據(jù)這種關系對事物的變化規(guī)律作出判斷,如根據(jù)炮彈的速度推測它能達到的高度和射程.這正是函數(shù)產生和發(fā)展的背景.
“function”一詞最初由德國數(shù)學家萊布尼茲(G.W.Leibniz,1646~1716)在1692年使用.在中國,清代數(shù)學家李善蘭(1811~1882)在1859年和英國傳教士偉烈亞力合譯的《代徽積拾級》中首次將“function”譯做“函數(shù)”.
萊布尼茲用“函數(shù)”表示隨曲線的變化而改變的幾何量,如坐標、切線等.1718年,他的學生,瑞士數(shù)學家約翰·伯努利(J.Bernoulli,1667~1748)強調函數(shù)要用公式表示.后來,數(shù)學家認為這不是判斷函數(shù)的標準.只要一些變量變化,另一些變量隨之變化就可以了.所以,1755年,瑞士數(shù)學家歐拉(L.Euler,1707~1783)將函數(shù)定義為“如果某些變量,以一種方式依賴于另一些變量,我們將前面的變量稱為后面變量的函數(shù)”.
當時很多數(shù)學家對于不用公式表示函數(shù)很不習慣,甚至抱懷疑態(tài)度.函數(shù)的概念仍然是比較模糊的.
隨著對微積分研究的深入,18世紀末19世紀初,人們對函數(shù)的認識向前推進了.德國數(shù)學家狄利克雷(P.G.L.Dirichlet,1805~1859)在1837年時提出:“如果對于x的每一個值,y總有一個完全確定的值與之對應,則y是x的函數(shù)”.這個定義較清楚地說明了函數(shù)的內涵.只要有一個法則,使得取值范圍中的每一個值,有一個確定的y和它對應就行了,不管這個法則是公式、圖象、表格還是其他形式.19世紀70年代以后,隨著集合概念的出現(xiàn),函數(shù)概念又進而用更加嚴謹?shù)募虾蛯Z言表述,這就是本節(jié)學習的函數(shù)概念.
綜上所述可知,函數(shù)概念的發(fā)展與生產、生活以及科學技術的實際需要緊密相關,而且隨著研究的深入,函數(shù)概念不斷得到嚴謹化、精確化的表達,這與我們學習函數(shù)的過程是一樣的.
你能以函數(shù)概念的發(fā)展為背景,談談從初中到高中學習函數(shù)概念的體會嗎?
1.探尋科學家發(fā)現(xiàn)問題的過程,對指導我們的學習有什么現(xiàn)實意義?
2.萊布尼茲、狄利克雷等科學家有哪些品質值得我們學習?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:單選題
x | 1 | 2 | 3 | 1 | 5 | 6 |
y | -1 | -2 | -3 | -4 | -1 | -6 |
w | 2 | 0 | 1 | 2 | 4 | 8 |
z | 0 | 0 | 0 | 0 | 0 | 0 |
查看答案和解析>>
科目:高中數(shù)學 來源:不詳 題型:單選題
x | 1 | 2 | 3 | 1 | 5 | 6 |
y | -1 | -2 | -3 | -4 | -1 | -6 |
w | 2 | 0 | 1 | 2 | 4 | 8 |
z | 0 | 0 | 0 | 0 | 0 | 0 |
A.y是x的函數(shù) | B.w不是x的函數(shù) |
C.z是x的函數(shù) | D.z不是x的函數(shù) |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
(1)設有x輛車裝運A種蘋果,有y輛車裝運B種蘋果,根據(jù)下表提供的信息,求y與x之間的函數(shù)關系式,并寫出自變量x的取值范圍;
蘋果品種 | A | B | C |
每輛汽車運載量(噸) | 2.2 | 2.1 | 2 |
每噸蘋果獲利(百元) | 6 | 8 | 5 |
(2)設此次外銷活動的利潤為W(百元),求W與x的函數(shù)關系式以及最大利潤.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com