【題目】在中學(xué)生綜合素質(zhì)評價某個維度的測評中,分優(yōu)秀、合格、尚待改進(jìn)三個等級進(jìn)行學(xué)生互評.某校高一年級有男生500人,女生400人,為了了解性別對該維度測評結(jié)果的影響,采用分層抽樣方法從高一年級抽取了45名學(xué)生的測評結(jié)果,并作出頻數(shù)統(tǒng)計表如下:
表一:男生
男生 | 等級 | 優(yōu)秀 | 合格 | 尚待改進(jìn) |
頻數(shù) | 15 | 5 |
表二:女生
女生 | 等級 | 優(yōu)秀 | 合格 | 尚待改進(jìn) |
頻數(shù) | 15 | 3 |
(1)求,的值;
(2)從表一、二中所有尚待改進(jìn)的學(xué)生中隨機(jī)抽取3人進(jìn)行交談,記其中抽取的女生人數(shù)為,求隨機(jī)變量的分布列及數(shù)學(xué)期望;
(3)由表中統(tǒng)計數(shù)據(jù)填寫列聯(lián)表,并判斷是否有90%的把握認(rèn)為“測評結(jié)果優(yōu)秀與性別有關(guān)”.
男生 | 女生 | 總計 | |
優(yōu)秀 | |||
非優(yōu)秀 | |||
總計 | 45 |
參考公式:,其中.
參考數(shù)據(jù):
0.01 | 0.05 | 0.01 | |
| 2.706 | 3.841 | 6.635 |
【答案】(1);(2)詳見解析;(3)沒有.
【解析】
(1)設(shè)從高一年級男生中抽出m人,利用分層抽樣的性質(zhì)列方程就出m,從而能求出x,y.(2)表一、二中所有尚待改進(jìn)的學(xué)生共7人,其中女生有2人,取出3人中有女生的人數(shù)可能為0,1,2,利用組合求其概率即可(3)根據(jù)列聯(lián)表直接計算即可根據(jù)結(jié)果得出結(jié)論.
(1)設(shè)從高一年級男生中抽取人,則
解得,則從女生中抽取20人
所以,.
(2) 表一、二中所有尚待改進(jìn)的學(xué)生共7人,其中女生有2人,則的所有可能的取值為0,1,2.
,,
.則隨機(jī)變量的概率分布列為:
| 0 | 1 | 2 |
|
|
|
|
所以數(shù)學(xué)期望為.
男生 | 女生 | 總計 | |
優(yōu)秀 | 15 | 15 | 30 |
非優(yōu)秀 | 10 | 5 | 15 |
總計 | 25 | 20 | 45 |
,
因?yàn)?/span>,
所以沒有90%的把握認(rèn)為“測評結(jié)果優(yōu)秀與性別有關(guān)”.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】命題方程表示焦點(diǎn)在軸上的雙曲線;命題若存在,使得成立.
(1)如果命題是真命題,求實(shí)數(shù)的取值范圍;
(2)如果“”為假命題,“”為真命題,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】隨著人們經(jīng)濟(jì)收入的不斷增加,個人購買家庭轎車已不再是一種時尚.車的使用費(fèi)用,尤其是隨著使用年限的增多,所支出的費(fèi)用到底會增長多少,一直是購車一族非常關(guān)心的問題.某汽車銷售公司做了一次抽樣調(diào)查,并統(tǒng)計得出某款車的使用年限x與所支出的總費(fèi)用y(萬元)有如表的數(shù)據(jù)資料:
使用年限x | 2 | 3 | 4 | 5 | 6 |
總費(fèi)用y | 2.2 | 3.8 | 5.5 | 6.5 | 7.0 |
(1)求線性回歸方程;
(2)估計使用年限為12年時,使用該款車的總費(fèi)用是多少萬元?
線性回歸方程中斜率和截距用最小二乘法估計計算公式如下:,
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),.
求函數(shù)的單調(diào)區(qū)間和極值;
設(shè),且、是曲線上的任意兩點(diǎn),若對任意的,直線AB的斜率恒大于常數(shù)m,求m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某“雙一流類”大學(xué)就業(yè)部從該校2018年已就業(yè)的大學(xué)本科畢業(yè)生中隨機(jī)抽取了100人進(jìn)行問卷調(diào)查,其中一項(xiàng)是他們的月薪收入情況,調(diào)查發(fā)現(xiàn),他們的月薪收入在人民幣1.65萬元到2.35萬元之間,根據(jù)統(tǒng)計數(shù)據(jù)分組,得到如下的頻率分布直方圖:
(1)將同一組數(shù)據(jù)用該區(qū)間的中點(diǎn)值作代表,求這100人月薪收入的樣本平均數(shù);
(2)該校在某地區(qū)就業(yè)的2018屆本科畢業(yè)生共50人,決定于2019國慶長假期間舉辦一次同學(xué)聯(lián)誼會,并收取一定的活動費(fèi)用,有兩種收費(fèi)方案:
方案一:設(shè)區(qū)間,月薪落在區(qū)間左側(cè)的每人收取400元,月薪落在區(qū)間內(nèi)的每人收取600元,月薪落在區(qū)間右側(cè)的每人收取800元;
方案二:每人按月薪收入的樣本平均數(shù)的收;
用該校就業(yè)部統(tǒng)計的這100人月薪收入的樣本頻率進(jìn)行估算,哪一種收費(fèi)方案能收到更多的費(fèi)用?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某工藝公司要對某種工藝品深加工,已知每個工藝品進(jìn)價為20元,每個的加工費(fèi)為n元,銷售單價為x元.根據(jù)市場調(diào)查,須有,,,同時日銷售量m(單位:個)與成正比.當(dāng)每個工藝品的銷售單價為29元時,日銷售量為1000個.
(1)寫出日銷售利潤y(單位:元)與x的函數(shù)關(guān)系式;
(2)當(dāng)每個工藝品的加工費(fèi)用為5元時,要使該公司的日銷售利潤為100萬元,試確定銷售單價x的值.(提示:函數(shù)與的圖象在上有且只有一個公共點(diǎn))
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),若存在實(shí)數(shù)t,使得任給,不等式恒成立,則m的最大值為( )
A.3B.6C.8D.9
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓,圓心為點(diǎn),點(diǎn)是圓內(nèi)一個定點(diǎn),是圓上任意一點(diǎn),線段的垂直平分線和半徑相交于點(diǎn)在圓上運(yùn)動.
(l)求動點(diǎn)的軌跡的方程;
(2)若為曲線上任意一點(diǎn),|的最大值;
(3)經(jīng)過點(diǎn)且斜率為的直線交曲線于兩點(diǎn)在軸上是否存在定點(diǎn),使得恒成立?若存在,求出點(diǎn)坐標(biāo):若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】對于定義在區(qū)間D上的函數(shù):若存在閉區(qū)間和常數(shù)e,使得對任意,都有,且對任意,當(dāng)時,恒成立,則稱函數(shù)為區(qū)間D上的“平底型”函數(shù).
(1)判斷函數(shù)和是否為R上的“平底型”函數(shù)?并說明理由;
(2)若函數(shù)是區(qū)間上的“平底型”函數(shù),求m和n的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com