【題目】已知函數(shù).
(1)求和函數(shù)的極值;
(2)若關(guān)于的方程有3個(gè)不同實(shí)根,求實(shí)數(shù)的取值范圍;
(3)直線為曲線的切線,且經(jīng)過原點(diǎn),求直線的方程.
【答案】(1)當(dāng), 取極大值0,當(dāng)時(shí),取極小值(2)(3)直線的方程或.
【解析】試題分析:(1)求導(dǎo),賦值,解得,可得進(jìn)而得的極值.
(2)若關(guān)于的方程有3個(gè)不同實(shí)根轉(zhuǎn)化為與有三個(gè)不同的交點(diǎn),結(jié)合函數(shù)圖象可知,所以.
(3)未知切點(diǎn),因此設(shè)切點(diǎn)為,寫出切線方程為,由切線過,求得,即得切線方程.
試題解析:(1)解:由,求導(dǎo),則,解得,
∴, ,
令,解得, ,由變化,
則當(dāng), 取極大值0,當(dāng)時(shí),取極小值
(2)解:由題意可知: 與有三個(gè)不同的交點(diǎn),由函數(shù)圖象可知,所以.
(3)解:設(shè)切點(diǎn),切線斜率,則切線方程,由切線過,則,解得或,
當(dāng),切線,切線方程,
當(dāng),切點(diǎn),切線,切線方程,直線的方程或.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在直角坐標(biāo)系中,曲線,曲線為參數(shù)), 以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系.
(1)求曲線的極坐標(biāo)方程;
(2)若射線分別交于兩點(diǎn), 求的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知{an}是等差數(shù)列,{bn}是等比數(shù)列,且b2=3,b3=9,a1=b1,a14=b4.
(1)求{an}的通項(xiàng)公式;
(2)設(shè)cn=an+bn,求數(shù)列{cn}的前n項(xiàng)和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知過點(diǎn)A(0,1)且斜率為k的直線l與圓C:(x-2)2+(y-3)2=1交于M,N兩點(diǎn).
(1)求k的取值范圍;
(2)若=12,其中O為坐標(biāo)原點(diǎn),求|MN|.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】葫蘆島市某工廠黨委為了研究手機(jī)對年輕職工工作和生活的影響情況做了一項(xiàng)調(diào)查:在廠內(nèi)用簡單隨機(jī)抽樣方法抽取了30名25歲至35歲的職工,對其“每十天累計(jì)看手機(jī)時(shí)間”(單位:小時(shí))進(jìn)行調(diào)查,得到莖葉圖如下.所抽取的男職工“每十天累計(jì)看手機(jī)時(shí)間”的平均值和所抽取的女生 “每十天累計(jì)看手機(jī)時(shí)間”的中位數(shù)分別是( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某少數(shù)民族的刺繡有著悠久的歷史,如圖(1),(2),(3),(4)為最簡單的四個(gè)圖案,這些圖案都是由小正方形構(gòu)成,小正方形數(shù)越多刺繡越漂亮.現(xiàn)按同樣的規(guī)律刺繡(小正方形的擺放規(guī)律相同),設(shè)第個(gè)圖形包含個(gè)小正方形.
(1)求出的值;
(2)利用合情推理的“歸納推理思想”,歸納出與之間的關(guān)系式,并根據(jù)你得到的關(guān)系式求出的表達(dá)式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了解學(xué)生身高情況,某校以的比例對全校1000名學(xué)生按性別進(jìn)行分層抽樣調(diào)查,已知男女比例為,測得男生身高情況的頻率分布直方圖(如圖所示):
(1)計(jì)算所抽取的男生人數(shù),并估計(jì)男生身高的中位數(shù)(保留兩位小數(shù));
(2)從樣本中身高在之間的男生中任選2人,求至少有1人身高在之間的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,以原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,已知曲線C:ρsin2θ=2acos θ(a>0),過點(diǎn)P(-2,-4)的直線l: (t為參數(shù))與曲線C相交于M,N兩點(diǎn).
(1)求曲線C的直角坐標(biāo)方程和直線l的普通方程;
(2)若|PM|,|MN|,|PN|成等比數(shù)列,求實(shí)數(shù)a的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,橢圓的左、右焦點(diǎn)分別為, 也是拋物線的焦點(diǎn),點(diǎn)M為在第一象限的交點(diǎn),且.
(1)求的方程;
(2)平面上的點(diǎn)N滿足,直線,且與交于A,B兩點(diǎn),若,求直線的方程.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com