【題目】已知在數(shù)列{an}中,設(shè)a1為首項(xiàng),其前n項(xiàng)和為Sn,若對(duì)任意的正整數(shù)m,n都有不等式S2m+S2n<2Sm+n(m≠n)恒成立,且2S6<S3.
(1)設(shè)數(shù)列{an}為等差數(shù)列,且公差為d,求的取值范圍;
(2)設(shè)數(shù)列{an}為等比數(shù)列,且公比為q(q>0且q≠1),求a1q的取值范圍.
【答案】(1)<﹣3;(2)a1q>0
【解析】
(1)根據(jù)已知條件,由于數(shù)列是等差數(shù)列,運(yùn)用等差數(shù)列的求和公式,建立不等式,進(jìn)一步求出相應(yīng)的結(jié)果;
(2)根據(jù)已知條件,由于數(shù)列是等比數(shù)列,運(yùn)用等比數(shù)列的求和公式,建立不等式,進(jìn)一步求出相應(yīng)的結(jié)果.
在數(shù)列{an}中,設(shè)a1為首項(xiàng),其前n項(xiàng)和為Sn,
若對(duì)任意的正整數(shù)m、n都有不等式S2m+S2n<2Sm+n(m≠n)恒成立,
(1)設(shè){an}為等差數(shù)列,且公差為d,
則:2ma1+d+2na1+d<2[(m+n)a1+d],
整理得:(m﹣n)2d<0,則d<0,由2S6>S3,整理得:9a1+27d>0,
則a1>﹣3d,所以d<0,<﹣3;
(2)設(shè){an}為等比數(shù)列,且公比為q(q>0且q≠1),
則,整理得(2qm+n﹣q2m﹣q2n)<0,
則:﹣(qm﹣qn)2<0,所以>0,由2S6>S3,則:2q6﹣q3﹣1<0
解得:﹣<q3<1,由于q>0,所以:0<q<1,則:a1>0.即有a1q>0.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(1)求經(jīng)過點(diǎn),且離心率為的橢圓的標(biāo)準(zhǔn)方程;
(2)已知雙曲線與橢圓:有相同的焦點(diǎn),且過點(diǎn),求雙曲線的標(biāo)準(zhǔn)方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點(diǎn),直線:,為平面上的動(dòng)點(diǎn),過點(diǎn)作直線的垂線,垂足為,且滿足.
(1)求動(dòng)點(diǎn)的軌跡的方程;
(2)過點(diǎn)作直線與軌跡交于,兩點(diǎn),為直線上一點(diǎn),且滿足,若的面積為,求直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)等差數(shù)列{an}的前n項(xiàng)和為Sn,若S9=81,a3+a5=14.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)bn=,若{bn}的前n項(xiàng)和為Tn,證明:Tn<.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在寬為的路邊安裝路燈,燈柱高為,燈桿是半徑為的圓的一段劣。窡舨捎缅F形燈罩,燈罩頂到路面的距離為,到燈柱所在直線的距離為.設(shè)為燈罩軸線與路面的交點(diǎn),圓心在線段上.
(1)當(dāng)為何值時(shí),點(diǎn)恰好在路面中線上?
(2)記圓心在路面上的射影為,且在線段上,求的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】有一個(gè)底面半徑為3,軸截面為正三角形的圓錐紙盒,在該紙盒內(nèi)放一個(gè)棱長(zhǎng)均為a的四面體,并且四面體在紙盒內(nèi)可以任意轉(zhuǎn)動(dòng),則a的最大值為________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓:的離心率為,橢圓:經(jīng)過點(diǎn).
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)設(shè)點(diǎn)是橢圓上的任意一點(diǎn),射線與橢圓交于點(diǎn),過點(diǎn)的直線與橢圓有且只有一個(gè)公共點(diǎn),直線與橢圓交于,兩個(gè)相異點(diǎn),證明:面積為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)若曲線在處的切線的斜率為3,求實(shí)數(shù)的值;
(2)若函數(shù)在區(qū)間上存在極小值,求實(shí)數(shù)的取值范圍;
(3)如果的解集中只有一個(gè)整數(shù),求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列說法正確的是( )
A.拋擲一枚硬幣,正面朝上的概率是,所以拋擲兩次一定會(huì)出現(xiàn)一次正面朝上的情況
B.某地氣象局預(yù)報(bào)說,明天本地降水概率為,這說明明天本地有的區(qū)域下雨
C.概率是客觀存在的,與試驗(yàn)次數(shù)無(wú)關(guān)
D.若買彩票中獎(jiǎng)的概率是萬(wàn)分之一,則買彩票一萬(wàn)次就有一次中獎(jiǎng)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com