如圖,已知所在的平面,是⊙的直徑,,C是⊙上一點,且

(1) 求證:;
(2) 求證:
(3)當時,求三棱錐的體積.
(1)欲證EF∥面ABC,根據(jù)直線與平面平行的判定定理可知只需證EF與面ABC內一直線平行即可,根據(jù)中位線可知EF∥BC,又BC?面ABC,EF?面ABC,滿足定理所需條件;
(2)欲證,可先證EF⊥面PAC,根據(jù)直線與平面垂直的判定定理可知只需證EF與面PAC內兩相交直線垂直,而PA⊥面ABC,BC?面ABC,則BC⊥PA,而AB是⊙O的直徑,則BC⊥AC,又PA∩AC=A,則BC⊥面PAC,滿足定理條件;
(3)

試題分析:解: (1)證明:在三角形PBC中,
所以  EF//BC,
                           4分
(2) 
是⊙的直徑,所以                 7分
所以,                     8分
因 EF//BC ,所以
因為, 所以.                  10分
(3) 在中, 
  
時,中點.中點 
       12分
                 14分
點評:本題主要考查直線與平面平行的判定,以及空間兩直線的位置關系的判定和三棱錐的體積的計算,體積的求解在最近兩年高考中頻繁出現(xiàn),值得重視.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

四棱錐P-ABCD中,PA⊥平面ABCD,E為AD的中點,ABCE為菱形,∠BAD=120°,PA=AB,G、F分別是線段CE、PB的中點.

(Ⅰ) 求證:FG∥平面PDC;
(Ⅱ) 求二面角的正切值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,在邊長為1的等邊三角形中,分別是邊上的點,,的中點,交于點,將沿折起,得到如圖所示的三棱錐,其中

(1) 證明://平面
(2) 證明:平面;
(3) 當時,求三棱錐的體積

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知四棱錐的底面是直角梯形,,,側面為正三角形,,.如圖所示.

(1) 證明:平面;
(2) 求四棱錐的體積

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,在三棱錐A-BCD中,△ABD和△BCD是兩個全等的等腰直角三角形,O為BD的中點,且AB=AD=CB=CD=2,AC=

(1)當時,求證:AO⊥平面BCD;
(2)當二面角的大小為時,求二面角的正切值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,在四棱錐中,平面平面,,中點,中點.

(Ⅰ)求證:平面
(Ⅱ)求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,在斜三棱柱ABC—A1B1C1中,AB⊥側面BB1C1C,BC=2,BB1=4,AB=,∠BCC1=60°.

(Ⅰ)求證:C1B⊥平面A1B1C1;
(Ⅱ)求A1B與平面ABC所成角的正切值;
(Ⅲ)若E為CC1中點,求二面角A—EB1—A1的正切值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,已知平面是正三角形,且.

(1)設是線段的中點,求證:∥平面;
(2)求直線與平面所成角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

正方體中,中點,則與平面所成角的正弦值為           

查看答案和解析>>

同步練習冊答案