【題目】已知數(shù)列滿足對任意的都有,且

(1)求數(shù)列的通項(xiàng)公式;

(2)設(shè)數(shù)列的前項(xiàng)和為,不等式對任意的正整數(shù)恒成立,求實(shí)數(shù)的取值范圍.

【答案】(1)(2)

【解析】試題分析:

1)當(dāng)n=1,n=2時,直接代入條件,可求得;

2)遞推一項(xiàng),然后做差得,所以;由于,即當(dāng)時都有,所以數(shù)列是首項(xiàng)為1,公差為1的等差數(shù)列,故求得數(shù)列的通項(xiàng)公式;

3)由(2)知,則,利用裂項(xiàng)相消法得,根據(jù)單調(diào)遞增得,要使不等式對任意正整數(shù)n恒成立,只要,即可求得實(shí)數(shù)a的取值范圍.

試題解析:

1)解:當(dāng)時,有,

由于,所以

當(dāng)時,有,

代入上式,由于,所以

2)解:由于,

則有

,得

由于,所以

同樣有

,得

所以

由于,即當(dāng)時都有

所以數(shù)列是首項(xiàng)為1,公差為1的等差數(shù)列.

3)解:由(2)知,則,所以

,數(shù)列單調(diào)遞增 .

.

要使不等式對任意正整數(shù)n恒成立,只要

.

,即.

所以,實(shí)數(shù)a的取值范圍是

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)
(1)判斷f(x)的奇偶性并證明;
(2)若f(x)的定義域?yàn)閇α,β](β>α>0),判斷f(x)在定義域上的增減性,并加以證明;
(3)若0<m<1,使f(x)的值域?yàn)閇logmm(β﹣1),logmm(α﹣1)]的定義域區(qū)間[α,β](β>α>0)是否存在?若存在,求出[α,β],若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)

)求數(shù)的最小正周期和對稱軸方程.

)銳角的三個頂點(diǎn) , 所對邊分別為 , ,若 , ,求及邊

)若中, ,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在某公司的職工食堂中,食堂每天以3元/個的價格從面包店購進(jìn)面包,然后以5元/個的價格出售.如果當(dāng)天賣不完,剩下的面包以1元/個的價格賣給飼料加工廠.根據(jù)以往統(tǒng)計(jì)資料,得到食堂每天面包需求量的頻率分布直方圖如圖所示.食堂某天購進(jìn)了 90個面包,以 (個)(其中)表示面包的需求量, (元)表示利潤.

(1)根據(jù)直方圖計(jì)算需求量的中位數(shù);

(2)估計(jì)利潤不少于100元的概率;

(3)在直方圖的需求量分組中,以需求量落入該區(qū)間的頻率作為需求量在該區(qū)間的概率,求的數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓C: =1(a>b>0)與y軸的交點(diǎn)為A,B(點(diǎn)A位于點(diǎn)B的上方),F(xiàn)為左焦點(diǎn),原點(diǎn)O到直線FA的距離為 b.
(1)求橢圓C的離心率;
(2)設(shè)b=2,直線y=kx+4與橢圓C交于不同的兩點(diǎn)M,N,求證:直線BM與直線AN的交點(diǎn)G在定直線上.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列{an} 中,a1=1,a2= ,且 (n=2,3,4,…)
(1)求a3、a4的值;
(2)設(shè)bn= (n∈N*),試用bn表示bn+1并求{bn} 的通項(xiàng)公式;
(3)設(shè)cn= (n∈N*),求數(shù)列{cn}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某聯(lián)歡晚會舉行抽獎活動,舉辦方設(shè)置了甲、乙兩種抽獎方案,方案甲的中獎率為 ,中獎可以獲得2分;方案乙的中獎率為P0(0<P0<1),中獎可以獲得3分;未中獎則不得分.每人有且只有一次抽獎機(jī)會,每次抽獎中獎與否互不影響,晚會結(jié)束后憑分?jǐn)?shù)兌換獎品. (Ⅰ)張三選擇方案甲抽獎,李四選擇方案乙抽獎,記他們的累計(jì)得分為X,若X≤3的概率為 ,求P0;
(Ⅱ)若張三、李四兩人都選擇方案甲或都選擇方案乙進(jìn)行抽獎,問:他們選擇何種方案抽獎,累計(jì)得分的數(shù)學(xué)期望較大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù) 的部分圖象如圖所示,則下列結(jié)論錯誤的是(
A.
B.函數(shù)f(x)在 上單調(diào)遞增
C.函數(shù)f(x)的一條對稱軸是
D.為了得到函數(shù)f(x)的圖象,只需將函數(shù)y=2cosx的圖象向右平移 個單位

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】將函數(shù)y=sin(x﹣ )的圖象上所有點(diǎn)的橫坐標(biāo)伸長到原來的2倍(縱坐標(biāo)不變),再將所得圖象向左平移 個單位,則所得函數(shù)圖象對應(yīng)的解析式為(
A.y=sin( x﹣
B.y=sin(2x﹣
C.y=sin x
D.y=sin( x﹣

查看答案和解析>>

同步練習(xí)冊答案