已知橢圓C1
x2
a2
+
y2
b2
=1(a>b>0)
的離心率為
2
2
,并且直線y=x+b是拋物線C2:y2=4x的一條切線.
(Ⅰ)求橢圓C1的方程.
(Ⅱ)過點S(0,-
1
3
)
的動直線l交橢圓C1于A、B兩點,試問:在直角坐標平面上是否存在一個定點T,使得以AB為直徑的圓恒過定點T?若存在求出T的坐標;若不存在,請說明理由.
(I)由
y=x+b
y2=4x
得x2+(2b-4)x+b2=0
直線y=x+b是拋物線C2:y2=4x的一條切線.
所以△=0⇒b=1e=
c
a
=
2
2
⇒a=
2

所以橢圓C1
x2
2
+y2=1
(5分)
(Ⅱ)當直線l與x軸平行時,以AB為直徑的圓方程為x2+(y+
1
3
)2=(
4
3
)2

當直線l與y軸重合時,以AB為直徑的圓方程為x2+y2=1
所以兩圓的切點為點(0,1)(8分)
所求的點T為點(0,1),證明如下.
當直線l與x軸垂直時,以AB為直徑的圓過點(0,1)
當直線l與x軸不垂直時,可設(shè)直線l為:y=kx-
1
3

y=kx-
1
3
x2
2
+y2=1
得(18k2+9)x2-12kx-16=0
設(shè)A(x1,y1),B(x2,y2)則
x1+x2=
12k
18k2+9
x1x2=
-16
18k2+9
TA
TB
=x1x2-
4
3
(x1+x2)+
16
9
=(1+k2)
-16
18k2+9
-
4
3
×
12k
18k2+9
+
16
9
=0

所以
TA
TB
,即以AB為直徑的圓過點(0,1)
所以存在一個定點T,使得以AB為直徑的圓恒過定點T(13分)
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分12分)已知的三邊長成等差數(shù)列,若點的坐標分別為.(1)求頂點的軌跡的方程;(2)若線段的延長線交軌跡于點,當時求線段的垂直平分線軸交點的橫坐標的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,有一正方形鋼板ABCD缺損一角(圖中的陰影部分),邊緣線OC是以直線AD為對稱軸,以線段AD的中點O為頂點的拋物線的一部分.工人師傅要將缺損一角切割下來,使剩余的部分成為一個直角梯形.若正方形的邊長為2米,問如何畫切割線EF,可使剩余的直角梯形的面積最大?并求其最大值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知橢圓C的左、右焦點分別是F1、F2,離心率為
3
2
,過F1且垂直于x軸的直線被橢圓C截得的線段長為1;
(Ⅰ)求橢圓C的方程.
(Ⅱ)若A,B,C是橢圓上的三個點,O是坐標原點,當點B是橢圓C的右頂點,且四邊形OABC為菱形時,求此菱形的面積.
(Ⅲ)設(shè)點p是橢圓C上除長軸端點外的任一點,連接PF1、PF2,設(shè)∠F1PF2的角平分線PM交橢圓C的長軸于點M(m,0),求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)
的長軸長是短軸長的兩倍,且過點A(2,1).
(1)求橢圓C的標準方程;
(2)若直線l:x-1-y=0與橢圓C交于不同的兩點M,N,求|MN|的值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知B(-1,1)是橢圓
x2
a2
+
y2
b2
=1
(a>b>0)上一點,且點B到橢圓的兩個焦點距離之和為4;
(1)求橢圓方程;
(2)設(shè)A為橢圓的左頂點,直線AB交y軸于點C,過C作斜率為k的直線l交橢圓于D,E兩點,若
S△CBD
S△CAE
=
1
6
,求實數(shù)k的值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

過橢圓左焦點F,傾斜角為
π
3
的直線交橢圓于A,B兩點,若|FA|=2|FB|,則橢圓的離心率為______.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖所示的曲線C是由部分拋物線C1:y=x2-1(|x|≥1)和曲線C2x2+
y2
m
=1
(y≤0,m>0)“合成”的,直線l與曲線C1相切于點M,與曲線C2相切于點N,記點M的橫坐標為t(t>1),其中A(-1,0),B(1,0).
(1)當t=
2
時,求m的值和點N的坐標;
(2)當實數(shù)m取何值時,∠MAB=∠NAB?并求出此時直線l的方程.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知橢圓C的左、右焦點坐標分別是(-
2
,0)
,(
2
,0)
,離心率是
6
3
,直線y=t橢圓C交與不同的兩點M,N,以線段為直徑作圓P,圓心為P.
(Ⅰ)求橢圓C的方程;
(Ⅱ)若圓P與x軸相切,求圓心P的坐標;
(Ⅲ)設(shè)Q(x,y)是圓P上的動點,當T變化時,求y的最大值.

查看答案和解析>>

同步練習冊答案