已知圓的圓心與點關(guān)于直線對稱,直線與圓相交于兩點,且,求圓的方程.

.

解析試題分析:先設(shè)點,根據(jù)對稱的特征,直線的斜率與直線的斜率互為負倒數(shù),且線段的中點在直線上,列出方程組,求解可得圓心,接著計算圓心到直線的距離,最后由弦長、圓心到直線的距離的平方關(guān)系:計算出半徑,根據(jù)圓心的坐標與半徑即可寫出圓的標準方程.
試題解析:設(shè)點關(guān)于直線的對稱點為
則由           4分
故圓心到直線的距離        6分
所以圓的半徑的平方              8分
故圓的方程為                 10分.
考點:1.圓的標準方程;2.直線與圓的位置關(guān)系.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

已知圓:軸相切,點為圓心.
(1)求的值;
(2)求圓軸上截得的弦長;
(3)若點是直線上的動點,過點作直線與圓相切,為切點.求四邊形面積的最小值。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知圓滿足:①截y軸所得弦長為2;②被x軸分成兩段圓弧,其弧長的比為3∶1;③圓心到直線l:x-2y=0的距離為,求該圓的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

若方程ax2+ay2-4(a-1)x+4y=0表示圓,求實數(shù)a的取值范圍,并求出半徑最小的圓的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

一動圓截直線和直線所得弦長分別為,求動圓圓心的軌跡方程。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知圓O1的方程為x2+(y+1)2=6,圓O2的圓心坐標為(2,1).若兩圓相交于A,B兩點,且|AB|=4,求圓O2的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

AB是圓O的直徑,D為圓O上一點,過D作圓O的切線交AB延長線于點C,若DA=DC,求證:AB=2BC.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知動圓與直線相切且與圓外切。
(1)求圓心的軌跡方程;
(2)過定點作直線交軌跡兩點,點關(guān)于坐標原點的對稱點,求證:

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知圓C經(jīng)過A(1,1)、B(2,)兩點,且圓心C在直線l:x-y+1=0上,求圓C的標準方程.

查看答案和解析>>

同步練習冊答案