已知甲口袋中有8個大小相同的小球,其中有5個白球,3個黑球;乙口袋中有4個大小相同的小球,其中有2個白球,2 個黑球,現(xiàn)采用分層抽樣方法(層內(nèi)采用不放回簡單隨機抽樣)從甲、乙兩個口袋中共摸出3個小球.
(I )求從甲、乙兩個口袋中分別抽取小球的個數(shù);
(II)求從甲口袋中抽取的小球中恰有一個白球的概率;
(III)記ξ表示抽取的3個小球中黑球的個數(shù),求ξ的分布列及數(shù)學(xué)期望.
分析:(I)由題意從甲、乙兩個口袋中抽取的小球個數(shù)之比為8:4,得到從甲和乙兩個口袋中分別抽取的小球是2,1
(II)由題意知本題是一個等可能事件的概率,試驗發(fā)生包含的事件數(shù)是C82C41,滿足條件的事件是C51C31C41,得到概率.
(III)由題意知變量的可能取值是0,1,2,3,結(jié)合變量對應(yīng)的事件和等可能事件的概率寫出變量的概率,寫出分辨率和期望值.
解答:解:(I)由題意從甲、乙兩個口袋中抽取的小球個數(shù)之比為8:4=2:1
∴從甲和乙兩個口袋中分別抽取的小球是2,1
(II)由題意知本題是一個等可能事件的概率,
試驗發(fā)生包含的事件數(shù)是C82C41,
滿足條件的事件是C51C31C41=60,
∴要求的概率是P=
60    
C
2
8
C
1
4
=
15
28

(III)由題意知變量的可能取值是0,1,2,3
P(ξ=0)=
5
28
,P(ξ=1)=
25
56
,P(ξ=3)=
3
56
,P(ξ=2)=
18
56

∴ξ的分布列是
 ξ  0  1  2
 p  
5
28
 
25
56
 
18
56
 
3
56
∴ξ的期望是Eξ=
25
56
+2×
18
56
+3×
3
56
=
5
4
點評:本題考查離散型隨機變量的分布列和期望,本題解題的關(guān)鍵是利用等可能事件的概率公式,做出幾個變量對應(yīng)的概率.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知甲口袋中有8個大小相同的小球,其中有5個白球,3個黑球;乙口袋中有4個大小相同的小球,其中有2個白球,2個黑球.現(xiàn)采用分層抽樣方法(層內(nèi)采用不放回簡單隨機抽樣)從甲、乙兩個口袋中共摸出3個小球.
(I )求從甲、乙兩個口袋中分別抽取小球的個數(shù);
(II )求從甲口袋中抽取的小球中恰有一個白球的概率;
(III)求抽取的3個小球中只有一個黑球的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知甲口袋中有8個大小相同的小球,其中有5個白球,3個黑球;乙口袋中有4個大小相同的小球,其中有2個白球,2個黑球.現(xiàn)采用分層抽樣方法(層內(nèi)采用不放回簡單隨機抽樣)從甲、乙兩個口袋中共摸出3個小球.
(I )求從甲、乙兩個口袋中分別抽取小球的個數(shù);
(II )求從甲口袋中抽取的小球中恰有一個白球的概率;
(III)求抽取的3個小球中只有一個黑球的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知甲口袋中有8個大小相同的小球,其中有5個白球,3個黑球;乙口袋中有4個大小相同的小球,其中有2個白球,2 個黑球,現(xiàn)采用分層抽樣方法(層內(nèi)采用不放回簡單隨機抽樣)從甲、乙兩個口袋中共摸出3個小球.
(I )求從甲、乙兩個口袋中分別抽取小球的個數(shù);
(II)求從甲口袋中抽取的小球中恰有一個白球的概率;
(III)記ξ表示抽取的3個小球中黑球的個數(shù),求ξ的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011年四川省宜賓市高考數(shù)學(xué)一模試卷(理科)(解析版) 題型:解答題

已知甲口袋中有8個大小相同的小球,其中有5個白球,3個黑球;乙口袋中有4個大小相同的小球,其中有2個白球,2 個黑球,現(xiàn)采用分層抽樣方法(層內(nèi)采用不放回簡單隨機抽樣)從甲、乙兩個口袋中共摸出3個小球.
(I )求從甲、乙兩個口袋中分別抽取小球的個數(shù);
(II)求從甲口袋中抽取的小球中恰有一個白球的概率;
(III)記ξ表示抽取的3個小球中黑球的個數(shù),求ξ的分布列及數(shù)學(xué)期望.

查看答案和解析>>

同步練習(xí)冊答案