【題目】已知函數(shù)是定義域為的奇函數(shù),當時,.
(1)求出函數(shù)在R上的解析式;
(2)畫出函數(shù)的圖象,并根據(jù)圖象寫出的單調(diào)區(qū)間.
(3)求使時的的值.
【答案】(1)(2)函數(shù)圖象見解析;的單調(diào)遞減區(qū)間為;的單調(diào)遞增區(qū)間為和.(3)或
【解析】
(1)根據(jù)函數(shù)為奇函數(shù),結(jié)合奇函數(shù)性質(zhì)即可求得解析式.
(2)根據(jù)解析式,畫出函數(shù)圖象,結(jié)合函數(shù)圖象即可判斷單調(diào)區(qū)間.
(3)由分段函數(shù)解析式,即可確定使時的的值.
(1)函數(shù)是定義域為的奇函數(shù),則滿足,
當時,,也滿足,所以時,,
當時,,
所以,
由奇函數(shù)性質(zhì),
則,
綜上可得,函數(shù)的解析式為,
(2)根據(jù)解析式,畫出函數(shù)圖象如下圖所示:
由函數(shù)圖象可知,的單調(diào)遞減區(qū)間為,
的單調(diào)遞增區(qū)間為和.
(3)當,,
即,解得或(舍),
當時,,
即,解得,
綜上可知,使時的的值為或.
科目:高中數(shù)學 來源: 題型:
【題目】如圖,建立平面直角坐標系,軸在地平面上,軸垂直于地平面,單位長度為1千米.某炮位于坐標原點.已知炮彈發(fā)射后的軌跡在方程表示的曲線上,其中與發(fā)射方向有關(guān).炮的射程是指炮彈落地點的橫坐標.
(1)求炮的最大射程;
(2)設(shè)在第一象限有一飛行物(忽略其大。滹w行高度為3.2千米,試問它的橫坐標不超過多少時,炮彈可以擊中它?請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù).(是自然對數(shù)的底數(shù))
(1)求的單調(diào)遞減區(qū)間;
(2)若函數(shù),證明在上只有兩個零點.(參考數(shù)據(jù):)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如果函數(shù)y=f(x)的導函數(shù)的圖象如圖所示,給出下列判斷:
①函數(shù)y=f(x)在區(qū)間內(nèi)單調(diào)遞增;
②函數(shù)y=f(x)在區(qū)間內(nèi)單調(diào)遞減;
③函數(shù)y=f(x)在區(qū)間(4,5)內(nèi)單調(diào)遞增;
④當x=2時,函數(shù)y=f(x)有極小值;
⑤當x=時,函數(shù)y=f(x)有極大值.
則上述判斷中正確的是( )
A. ①② B. ②③
C. ③④⑤ D. ③
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】下表中的數(shù)據(jù)是一次階段性考試某班的數(shù)學、物理原始成績:
用這44人的兩科成績制作如下散點圖:
學號為22號的同學由于嚴重感冒導致物理考試發(fā)揮失常,學號為31號的同學因故未能參加物理學科的考試,為了使分析結(jié)果更客觀準確,老師將兩同學的成績(對應(yīng)于圖中兩點)剔除后,用剩下的42個同學的數(shù)據(jù)作分析,計算得到下列統(tǒng)計指標:
數(shù)學學科平均分為110.5,標準差為18.36,物理學科的平均分為74,標準差為11.18,數(shù)學成績
與物理成績的相關(guān)系數(shù)為,回歸直線(如圖所示)的方程為.
(1)若不剔除兩同學的數(shù)據(jù),用全部44人的成績作回歸分析,設(shè)數(shù)學成績與物理成績的相關(guān)系數(shù)為,回歸直線為,試分析與的大小關(guān)系,并在圖中畫出回歸直線的大致位置;
(2)如果同學參加了這次物理考試,估計同學的物理分數(shù)(精確到個位);
(3)就這次考試而言,學號為16號的同學數(shù)學與物理哪個學科成績要好一些?(通常為了比較某個學生不同學科的成績水平,可按公式統(tǒng)一化成標準分再進行比較,其中為學科原始分,為學科平均分,為學科標準差).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某校高一年級三個班共有學生120名,這三個班的男女生人數(shù)如下表所示,已知在全年級中隨機抽取1名學生,抽到二班女生的概率是0.2,則_________.現(xiàn)用分層抽樣的方法在全年級抽取30名學生,則應(yīng)在三班抽取的學生人數(shù)為________.
一班 | 二班 | 三班 | |
女生人數(shù) | 20 | ||
男生人數(shù) | 20 | 20 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】隨著人們經(jīng)濟收入的不斷增加,個人購買家庭轎車已不再是一種時尚.車的使用費用,尤其是隨著使用年限的增多,所支出的費用到底會增長多少,一直是購車一族非常關(guān)心的問題.某汽車銷售公司做了一次抽樣調(diào)查,并統(tǒng)計得出某款車的使用年限x與所支出的總費用y(萬元)有如表的數(shù)據(jù)資料:
使用年限x | 2 | 3 | 4 | 5 | 6 |
總費用y | 2.2 | 3.8 | 5.5 | 6.5 | 7.0 |
(1)求線性回歸方程;
(2)估計使用年限為12年時,使用該款車的總費用是多少萬元?
線性回歸方程中斜率和截距用最小二乘法估計計算公式如下:,
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設(shè),,表示三條不同的直線,,,表示三個不同的平面,給出下列四個結(jié)論:
①若,,,則;
②若,是在內(nèi)的射影,,則;
③若是平面的一條斜線,,為過的一條動直線,則可能有且;
④若,,則.
其中正確的個數(shù)為( )個.
A.1B.2C.3D.4
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com