【題目】設(shè)數(shù)列的前項(xiàng)和為,已知(),且.
(1)證明為等比數(shù)列,并求數(shù)列的通項(xiàng)公式;
(2)設(shè),且證明;
(3)在(2)小問(wèn)的條件下,若對(duì)任意的,不等式恒成立,試求實(shí)數(shù)的取值范圍.
【答案】(1)(2)見(jiàn)解析(3)
【解析】分析:(1)根據(jù)題設(shè)條件,利用等比數(shù)列的定義,即可判定數(shù)列是等比數(shù)列,進(jìn)而求解數(shù)列的通項(xiàng)公式;
(2)由(1),得,進(jìn)而得到,即可利用放縮法,證得;
(3)當(dāng)恒成立時(shí),即恒成立
設(shè),分類討論求得函數(shù)的最大值,即可求得實(shí)數(shù)的取值范圍.
詳解:(1)在中
令,得即,
∵ 解得
當(dāng)時(shí),由,得到
則
又,則
是以為首項(xiàng),為公比的等比數(shù)列,
,即
,則,
當(dāng)時(shí),
當(dāng)時(shí),,
綜上,
(3)當(dāng)恒成立時(shí),即()恒成立
設(shè)(),
當(dāng)時(shí),恒成立,則滿足條件;
當(dāng)時(shí),由二次函數(shù)性質(zhì)知不恒成立;
當(dāng)時(shí),由于對(duì)稱軸 ,則在上單調(diào)遞減,
恒成立,則滿足條件,
綜上所述,實(shí)數(shù)λ的取值范圍是
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了了解某城市居民用水量的情況,我們獲得100位居民某年的月均用水量(單位:噸)通過(guò)對(duì)數(shù)據(jù)的處理,我們獲得了該100位居民月均用水量的頻率分布表,并繪制了頻率分布直方圖(部分?jǐn)?shù)據(jù)隱藏)
100位居民月均用水量的頻率分布表
組號(hào) | 分組 | 頻數(shù) | 頻率 |
1 | 4 | 0.04 | |
2 | 0.08 | ||
3 | 15 | ||
4 | 22 | ||
5 | |||
6 | 14 | 0.14 | |
7 | 6 | ||
8 | 4 | 0.04 | |
9 | 0.02 | ||
合 計(jì) | 100 |
(1)確定表中與的值;
(2)求頻率分布直方圖中左數(shù)第4個(gè)矩形的高度;
(3)在頻率分布直方圖中畫出頻率分布折線圖;
(4)我們想得到總體密度曲線,請(qǐng)回答我們應(yīng)該怎么做?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)f(x)是定義在R上的函數(shù),對(duì)m,n∈R,恒有f(m+n)=f(m)·f(n)(f(m)≠0,f(n)≠0),且當(dāng)x>0時(shí),0<f(x)<1.
(1)求證f(0)=1;
(2)求證x∈R時(shí),恒有f(x)>0;
(3)求證f(x)在R上是減函數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知 ,其中向量 (x∈R),
(1)求函數(shù)y=f(x)的單調(diào)遞增區(qū)間;
(2)在△ABC中,角A、B、C的對(duì)邊分別為a、b、c,已知f (A)=2,a= ,b= ,求邊長(zhǎng)c的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知a>0,b>0,函數(shù)f(x)=|x+a|+|2x﹣b|的最小值為1.
(1)求證:2a+b=2;
(2)若a+2b≥tab恒成立,求實(shí)數(shù)t的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四棱錐P-ABCD中,AB//CD,且
(1)證明:平面PAB⊥平面PAD;
(2)若PA=PD=AB=DC, ,且四棱錐P-ABCD的體積為,求該四棱錐的側(cè)面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】橢圓: 的左頂點(diǎn)為,點(diǎn)是橢圓上的兩個(gè)動(dòng)點(diǎn),若直線 的斜率乘積為定值,則動(dòng)直線恒過(guò)定點(diǎn)的坐標(biāo)為__________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在四棱錐中,底面為正方形, 底面, 為棱的中點(diǎn).
(1)證明: ;
(2)求直線與平面所成角的正弦值;
(3)若為中點(diǎn),棱上是否存在一點(diǎn),使得,若存在,求出的值,若不存在,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某學(xué)校有兩個(gè)參加國(guó)際中學(xué)生交流活動(dòng)的代表名額,為此該學(xué)校高中部推薦2男1女三名候選人,初中部也推薦了1男2女三名候選人。若從6名學(xué)生中人選2人做代表。
求:(1)選出的2名同學(xué)來(lái)自不同年相級(jí)部且性別同的概率;
(2)選出的2名同學(xué)都來(lái)自高中部或都來(lái)自初中部的概率。
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com