【題目】已知四棱錐中,底面為直角梯形,平面,且,.

1)求證:平面平面;

2)若與平面所成的角為,求二面角的余弦值.

【答案】1)證明見解析(2

【解析】

1)證明:取的中點(diǎn),連接,,.根據(jù)平面幾何知識和線面垂直的判定可證得平面,再證得,可證明平面平面.

2)由線面角的定義可得與平面所成的角,再以點(diǎn)為坐標(biāo)原點(diǎn),分別以,,所在直線為,,軸,建立如圖所示的空間直角坐標(biāo)系,求得平面和平面的法向量,由二面角的向量求解方法可求得二面角的余弦值.

解:(1)證明:取的中點(diǎn),連接,.

,∴.

又∵,,∴四邊形為正方形,則.

平面平面,∴.

,∴平面.

,∴四邊形為平行四邊形,∴,

平面.平面

∴平面平面.

2)∵平面,∴與平面所成的角,

,則.

設(shè),則,,.

以點(diǎn)為坐標(biāo)原點(diǎn),分別以,所在直線為,,軸,建立如圖所示的空間直角坐標(biāo)系,

,,,.

平面,∴平面的一個法向量.

設(shè)平面的法向量,∵,,

,取,則.

設(shè)二面角的平面角為,∴.

由圖可知二面角為銳角,故二面角的余弦值為.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)fx)=|x2|+|x+1|

1)解關(guān)于x的不等式fx)≤5;

2)若函數(shù)fx)的最小值記為m,設(shè)a,bc均為正實(shí)數(shù),且a+4b+9cm,求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),.

1)若,求的零點(diǎn)個數(shù);

2)證明:,.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某險種的基本保費(fèi)為a(單位:元),繼續(xù)購買該險種的投保人稱為續(xù)保人,續(xù)保人本年度的保費(fèi)與其上年度出險次數(shù)的關(guān)聯(lián)如下:

上年度出險次數(shù)

0

1

2

3

4

≥5

保費(fèi)

0.85a

a

1.25a

1.5a

1.75a

2a

隨機(jī)調(diào)查了該險種的200名續(xù)保人在一年內(nèi)的出險情況,得到如下統(tǒng)計(jì)表:

出險次數(shù)

0

1

2

3

4

≥5

頻數(shù)

60

50

30

30

20

10

(1)記A為事件:“一續(xù)保人本年度的保費(fèi)不高于基本保費(fèi)”,求P(A)的估計(jì)值;

(2)記B為事件:“一續(xù)保人本年度的保費(fèi)高于基本保費(fèi)但不高于基本保費(fèi)的160%”,求P(B)的估計(jì)值;

(3)求續(xù)保人本年度平均保費(fèi)的估計(jì)值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在四棱錐中,四邊形為矩形,為等腰三角形,,平面平面,且,,分別為,的中點(diǎn).

1)證明:平面;

2)證明:平面平面;

3)求四棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

1)若上存在極大值,求的取值范圍;

2)若軸是曲線的一條切線,證明:當(dāng)時,.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某苗木基地常年供應(yīng)多種規(guī)格的優(yōu)質(zhì)樹苗.為更好地銷售樹苗,建設(shè)生態(tài)文明家鄉(xiāng)和美好家園,基地積極主動地聯(lián)系了甲、乙、丙三家公司,假定基地得到公司甲、乙、丙的購買合同的概率分別、、,且基地是否得到三家公司的購買合同是相互獨(dú)立的.

1)若公司甲計(jì)劃與基地簽訂300棵銀杏實(shí)生苗的銷售合同,每棵銀杏實(shí)生苗的價格為90元,栽種后,每棵樹苗當(dāng)年的成活率都為0.9,對當(dāng)年沒有成活的樹苗,第二年需再補(bǔ)種1.現(xiàn)公司甲為苗木基地提供了兩種售后方案,

方案一:公司甲購買300棵銀杏樹苗后,基地需提供一年一次,共計(jì)兩年的補(bǔ)種服務(wù),且每次補(bǔ)種人工及運(yùn)輸費(fèi)用平均為800元;

方案二:公司甲購買300棵銀杏樹苗后,基地一次性地多給公司甲60棵樹苗,后期的移栽培育工作由公司甲自行負(fù)責(zé).

若基地首次運(yùn)送方案一的300棵樹苗及方案二的360棵樹苗的運(yùn)費(fèi)及栽種費(fèi)用合計(jì)都為1600元,試估算兩種方案下苗木基地的合同收益分別是多少?

2)記為該基地得到三家公司購買合同的個數(shù),若,求隨機(jī)變量的分布列與數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,是邊長為2的正方形,平面,且

(Ⅰ)求證:平面平面;

(Ⅱ)線段上是否存在一點(diǎn),使二而角等于45°?若存在,請找出點(diǎn)的位置;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,橢圓的左、右焦點(diǎn)分別為,橢圓上一點(diǎn)與兩焦點(diǎn)構(gòu)成的三角形的周長為6,離心率為,

(Ⅰ)求橢圓的方程;

(Ⅱ)過點(diǎn)的直線交橢圓兩點(diǎn),問在軸上是否存在定點(diǎn),使得為定值?證明你的結(jié)論.

查看答案和解析>>

同步練習(xí)冊答案