【題目】設(shè)集合A={x|1≤x≤4},B={x|m≤x≤m+1}.
(1)當(dāng)m=3時(shí),求A∩B與A∩RB;
(2)若A∩B=B,求實(shí)數(shù)m的取值范圍.

【答案】
(1)解:m=3時(shí),B={x|3≤x≤4}.A∩B=[3,4].

RB=(﹣∞,3)∪(4,+∞);

A∩RB=[1,3)


(2)解:∵A∩B=B,∴BA.

,解得1≤m≤3.

∴實(shí)數(shù)m的取值范圍是[1,3]


【解析】(1)m=3時(shí),B={x|3≤x≤4}.利用交集的運(yùn)算性質(zhì)即可得出A∩B.利用補(bǔ)集的運(yùn)算性質(zhì)可得RB=(﹣∞,3)∪(4,+∞),即可得出A∩RB.(2)A∩B=B,考點(diǎn)BA.考點(diǎn) ,解得m范圍.
【考點(diǎn)精析】本題主要考查了交、并、補(bǔ)集的混合運(yùn)算的相關(guān)知識(shí)點(diǎn),需要掌握求集合的并、交、補(bǔ)是集合間的基本運(yùn)算,運(yùn)算結(jié)果仍然還是集合,區(qū)分交集與并集的關(guān)鍵是“且”與“或”,在處理有關(guān)交集與并集的問(wèn)題時(shí),常常從這兩個(gè)字眼出發(fā)去揭示、挖掘題設(shè)條件,結(jié)合Venn圖或數(shù)軸進(jìn)而用集合語(yǔ)言表達(dá),增強(qiáng)數(shù)形結(jié)合的思想方法才能正確解答此題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=( x的圖象與函數(shù)g(x)的圖象關(guān)于直線(xiàn)y=x對(duì)稱(chēng),令h(x)=g(1﹣|x|),則關(guān)于h(x)有下列命題:
①h(x)的圖象關(guān)于原點(diǎn)對(duì)稱(chēng);
②h(x)為偶函數(shù);
③h(x)的最小值為0;
④h(x)在(0,1)上為減函數(shù).
其中正確命題的序號(hào)為:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知分別是橢圓的左、右焦點(diǎn),離心率為分別是橢圓的上、下頂點(diǎn),.

(1)求橢圓的方程;

(2)過(guò)作直線(xiàn)與交于兩點(diǎn),求三角形面積的最大值(是坐標(biāo)原點(diǎn)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓經(jīng)過(guò)點(diǎn),且離心率為.

(1)求橢圓的方程;

(2)設(shè)點(diǎn)軸上的射影為點(diǎn),過(guò)點(diǎn)的直線(xiàn)與橢圓相交于 兩點(diǎn),且,求直線(xiàn)的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓方程為,雙曲線(xiàn)的兩條漸近線(xiàn)分別為 ,過(guò)橢圓的右焦點(diǎn)作直線(xiàn),使,又交于點(diǎn),設(shè)直線(xiàn)與橢圓的兩個(gè)交點(diǎn)由上至下依次為 . 

(1)若所成的銳角為,且雙曲線(xiàn)的焦距為4,求橢圓的方程;

(2)求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù)f(x)=ax+(k﹣1)ax(a>且a≠1)是定義域?yàn)镽的奇函數(shù).
(1)求k值;
(2)若f(1)>0,試判斷函數(shù)單調(diào)性,并求使不等式f(x2+x)+f(t﹣2x)>0恒成立的t的取值范圍;
(3)若f(1)= ,設(shè)g(x)=a2x+a2x﹣2mf(x),g(x)在[1,+∞)上的最小值為﹣1,求m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=x2﹣4|x|+1,若f(x)在區(qū)間[a,2a+1]上的最大值為1,則a的取值范圍為

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),其中均為實(shí)數(shù), 為自然對(duì)數(shù)的底數(shù).

(I)求函數(shù)的極值;

(II)設(shè),若對(duì)任意的,

恒成立,求實(shí)數(shù)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四棱錐中,底面為直角梯形, ,平面平面 分別為的中點(diǎn), 的中點(diǎn),過(guò)作平面分別與交于點(diǎn).

(Ⅰ)當(dāng)中點(diǎn)時(shí),求證:平面平面;

(Ⅱ)當(dāng)時(shí),求三棱錐的體積.

查看答案和解析>>

同步練習(xí)冊(cè)答案