已知是實數(shù),函數(shù),和,分別是的導函數(shù),若在區(qū)間上恒成立,則稱和在區(qū)間上單調性一致.
(Ⅰ)設,若函數(shù)和在區(qū)間上單調性一致,求實數(shù)的取值范圍;
(Ⅱ)設且,若函數(shù)和在以為端點的開區(qū)間上單調性一致,求的最大值.
(Ⅰ);(Ⅱ).
【解析】
試題分析:(Ⅰ)由不等式恒成立,即可求出結果. (Ⅱ)在以為端點的開區(qū)間上恒成立,對的大小分類討論,以確定的取值范圍,從而去確定的最大值.
試題解析:由已知,,,;
(Ⅰ)由題設“單調性一致”定義知,在區(qū)間上恒成立,
即 在區(qū)間上恒成立,
因,所以,所以,在區(qū)間上恒成立,
即在區(qū)間上恒成立,而在上最大值
所以,,即;
(Ⅱ)由“單調性一致”定義知,在以為端點的開區(qū)間上恒成立,
即在以為端點的開區(qū)間上恒成立,
因,所以,由,得,,;
①若,則開區(qū)間為,取,由知,和在區(qū)間上單調性不一致,不符合題設;
②若,因均為非負,故不在以為端點的開區(qū)間內;所以,只有可能在區(qū)間上;
由在以為端點的區(qū)間上恒成立,知要么不小于中的大者,要么不大于中的小者;
因為都不大于0,所以,,所以,由知,所以;
當時,由在區(qū)間上恒成立,即在區(qū)間上恒成立,知最大值為,而由解得;
此時,,配方后知,取不到最大值;
當時,顯然,此時,當,即時,取得最大值;綜上,的最大值為.
考點:不等式恒成立、函數(shù)的最值、分類討論的思想.
科目:高中數(shù)學 來源: 題型:
2x | 4-x |
查看答案和解析>>
科目:高中數(shù)學 來源:江西省高安中學2012屆高三第二次綜合考試數(shù)學理科試題 題型:044
已知a,b是實數(shù),函數(shù),和是f(x),g(x)的導函數(shù),若在區(qū)間I上恒成立,則稱f(x)和g(x)在區(qū)間I上單調性一致.
(1)設a>0,若函數(shù)f(x)和g(x)在區(qū)間[-1,+∞)上單調性一致,求實數(shù)b的取值范圍;
(2)設a<0且a≠b,若函數(shù)f(x)和g(x)在以a,b為端點的開區(qū)間上單調性一致,求|a-b|的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源:2014屆江蘇省高三開學檢測文科數(shù)學試卷(解析版) 題型:解答題
已知是實數(shù),函數(shù),和,分別是的導函數(shù),若在區(qū)間上恒成立,則稱和在區(qū)間上單調性一致.
(Ⅰ)設,若函數(shù)和在區(qū)間上單調性一致,求實數(shù)的取值范圍;
(Ⅱ)設且,若函數(shù)和在以為端點的開區(qū)間上單調性一致,求的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源:2012年全國普通高等學校招生統(tǒng)一考試數(shù)學(江蘇卷解析版) 題型:解答題
若函數(shù)在處取得極大值或極小值,則稱為函數(shù)的極值點。
已知是實數(shù),1和是函數(shù)的兩個極值點.
(1)求和的值;
(2)設函數(shù)的導函數(shù),求的極值點;
(3)設,其中,求函數(shù)的零點個數(shù).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com