精英家教網 > 高中數學 > 題目詳情
e1
e2
是兩個不共線的向量,若向量
a
=
e1
e2
(λ∈R)
與向量
b
=-(λ
e1
-4
e2
)
共線且方向相同,則λ=
-2
-2
分析:根據兩個向量平行的關系,寫出兩個向量共線的充要條件,整理出關于k和λ的關系式,把λ用k表示,得到關于k的方程,解方程組即可.
解答:解:因為:向量
a
=
e1
e2
(λ∈R)
與向量
b
=-(λ
e1
-4
e2
)
共線且方向相同
所以:
e1
e2
=k[-(λ
e1
-4
e2
)]k>0
∴1=-kλ,-λ=4k;
∴λ2=4⇒λ=±2,
∵k>0
∴λ=-2.
故答案為:-2.
點評:本題考查向量共線的充要條件,是一個基礎題,這種題目可以出現在大型考試的選擇和填空中,若出現是一個送分題目.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

e1
,
e2
是兩個不共線的非零向量,
(1)如果
AB
=
e1
+
e2
,
BC
=2
e1
+8
e2
,
CD
=3(
e1
-
e2
)
,求證:A、B、D三點共線.
(2)欲使k
e1
+
e2
e1
+k
e2
共線,試確定實數k的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

e1
,
e2
是兩個不共線的向量,且向量
a
=2
e1
-
e2
與向量
b
=
e1
+λ
e2
是共線向量,則實數λ=
-
1
2
-
1
2

查看答案和解析>>

科目:高中數學 來源: 題型:

設e1與e2是兩個不共線向量,
AB
=3e1+2e2
CB
=ke1+e2,
CD
=3e1-2ke2,若A、B、D三點共線,則k的值為( 。

查看答案和解析>>

科目:高中數學 來源: 題型:

e
1
e
2是兩個不共線的向量,已知
AB
=2
e
1+k
e
2,
CB
=
e
1+3
e
2,
CD
=2
e
1-
e
2,若A、B、D三點共線,則k的值是(  )

查看答案和解析>>

同步練習冊答案