(12分) 已知在拋物線上,的重心與此拋物線的焦點F重合。
⑴ 寫出該拋物線的標準方程和焦點F的坐標;
⑵ 求線段BC的中點M的坐標;
⑶ 求BC所在直線的方程。

⑴方程為,焦點F的坐標為

解析試題分析:⑴ 由點在拋物線上,有解得p =16,所以拋物線方程為,焦點F的坐標為。
⑵ 解法一:由于的重心,設M是BC的中點,
所以,即有
設點M的坐標為,所以
解得,所以點M的坐標為
解法二:
∵M是BC的中點,
⑶ ∵點在拋物線上,

,又點在直線BC上
…12分
考點:拋物線方程及拋物線中的中點弦問題
點評:圓錐曲線的中點弦問題(直線與圓錐曲線相較于兩點,涉及到弦的中點)采用點差法推理化簡較容易,計算量小

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分12分)已知橢圓的中心在坐標原點O,長軸長為2,離心率e=,過右焦點F的直線l交橢圓于P、Q兩點.
(Ⅰ)求橢圓的方程;
(Ⅱ)若OP、OQ為鄰邊的平行四邊形是矩形,求滿足該條件的直線l的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本大題滿分14分)
已知△的兩個頂點的坐標分別是,,且所在直線的斜率之積等于
(Ⅰ)求頂點的軌跡的方程,并判斷軌跡為何種圓錐曲線;
(Ⅱ)當時,過點的直線交曲線兩點,設點關于軸的對稱點為(不重合).求證直線軸的交點為定點,并求出該定點的坐標.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分12分)
設雙曲線的方程為,為其左、右兩個頂點,是雙曲線 上的任意一點,作,垂足分別為,交于點.
(1)求點的軌跡方程;
(2)設、的離心率分別為,當時,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分12分)
拋物線的焦點與雙曲線的右焦點重合.
(Ⅰ)求拋物線的方程;
(Ⅱ)求拋物線的準線與雙曲線的漸近線圍成的三角形的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分12分)
雙曲線與雙曲線有共同的漸近線,且經(jīng)過點,橢圓以雙曲線的焦點為焦點且橢圓上的點與焦點的最短距離為,求雙曲線和橢圓的方程。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本題滿分15分)
已知點是拋物線上相異兩點,且滿足
(Ⅰ)若的中垂線經(jīng)過點,求直線的方程;
(Ⅱ)若的中垂線交軸于點,求的面積的最大值及此時直線的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分14分)已知中心在坐標原點O,焦點在軸上,長軸長是短軸長的2倍的橢圓經(jīng)過點M(2,1)
(Ⅰ)求橢圓的方程;
(Ⅱ)直線平行于,且與橢圓交于A、B兩個不同點.
(ⅰ)若為鈍角,求直線軸上的截距m的取值范圍;
(ⅱ)求證直線MA、MBx軸圍成的三角形總是等腰三角形.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分12分)
已知橢圓的左、右焦點分別為,離心率, .
(I)求橢圓的標準方程;
(II)過點的直線與該橢圓交于兩點,且,求直線的方程.

查看答案和解析>>

同步練習冊答案