【題目】已知拋物線),圓),拋物線上的點到其準線的距離的最小值為.

1)求拋物線的方程及其準線方程;

2)如圖,點是拋物線在第一象限內(nèi)一點,過點P作圓的兩條切線分別交拋物線于點A,BAB異于點P),問是否存在圓使AB恰為其切線?若存在,求出r的值;若不存在,說明理由.

【答案】1的方程為,準線方程為.2)存在,

【解析】

1)由得到p即可;

2)設,利用點斜式得到PA的的方程為,由PA的距離為半徑可得,同理,同理寫出直線AB的方程,利用點到直線AB的距離為半徑建立方程即可.

解:(1)由題意得,解得,

所以拋物線的方程為,準線方程為.

2)由(1)知,.

假設存在圓使得AB恰為其切線,設

則直線PA的的方程為,即.

由點PA的距離為r,得,

化簡,得,

同理,得.所以,是方程的兩個不等實根,

,.

易得直線AB的方程為,

由點到直線AB的距離為r,得,

所以

于是,,

化簡,得,即.

經(jīng)分析知,,因此.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

1)設函數(shù),求函數(shù)的極值;

2)若上存在一點,使得成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】若無窮數(shù)列滿足:,且對任意的,,,)都有,則稱數(shù)列為“G”數(shù)列.

1)已知等比數(shù)列的通項為,證明:是“G”數(shù)列;

2)記數(shù)列的前n項和為且有,若對每一個,中的較小者組成新的數(shù)列,若數(shù)列為“G”數(shù)列,求實數(shù)的取值范圍?

3)若數(shù)列是“G”數(shù)列,且數(shù)列的前n項之積滿足,求證:數(shù)列是等比數(shù)列.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知拋物線的焦點為,過點的直線交拋物線兩點.

1)當時,求直線的方程;

2)若過點且垂直于直線的直線與拋物線交于兩點,記的面積分別為,求的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設橢圓的右焦點為,右頂點為,已知橢圓離心率為,過點且與軸垂直的直線被橢圓截得的線段長為3.

(Ⅰ)求橢圓的方程;

(Ⅱ)設過點的直線與橢圓交于點不在軸上),垂直于的直線與交于點,與軸交于點,若,且,求直線斜率的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某省確定從2021年開始,高考采用的模式,取消文理分科,即“3”包括語文、數(shù)學、外語,為必考科目;“1”表示從物理、歷史中任選一門;“2”則是從生物、化學、地理、政治中選擇兩門,共計六門考試科目.某高中從高一年級2000名學生(其中女生900人)中,采用分層抽樣的方法抽取名學生進行調(diào)查.

1)已知抽取的名學生中含男生110人,求的值及抽取到的女生人數(shù);

2)學校計劃在高二上學期開設選修中的物理歷史兩個科目,為了了解學生對這兩個科目的選課情況,對在(1)的條件下抽取到的名學生進行問卷調(diào)杳(假定每名學生在這兩個科目中必須洗擇一個科目且只能選擇一個科目).下表是根據(jù)調(diào)查結果得到的列聯(lián)表,請將列聯(lián)表補充完整,并判斷是否有的把握認為選擇科目與性別有關?說明你的理由;

性別

選擇物理

選擇歷史

總計

男生

50

女生

30

總計

3)在(2)的條件下,從抽取的選擇物理的學生中按分層抽樣抽取6人,再從這6名學生中抽取2人,對物理的選課意向作深入了解,求2人中至少有1名女生的概率.

附:,其中.

0.100

0.050

0.025

0.010

0.005

0.001

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)

1)當時,求滿足不等式組的取值范圍;

2)當時,不等式恒成立.的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知在平面直角坐標系xOy中,直線l的參數(shù)方程為t為參數(shù)),曲線的方程為.以坐標原點O為極點,x軸的正半軸為極軸建立極坐標系.

1)求直線l和曲線的極坐標方程;

2)曲線分別交直線l和曲線于點A,B,求的最大值及相應的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在直角坐標系中,直線的參數(shù)方程為為參數(shù),.以坐標原點為極點,軸正半軸為極軸建立極坐標系,曲線的極坐標方程為.

1)求的普通方程和的參數(shù)方程;

2)若直線與曲線相交于兩點,且的面積為,求.

查看答案和解析>>

同步練習冊答案