已知等差數(shù)列中,,求數(shù)列的通項(xiàng)公式及
;=5700.
解析試題分析:設(shè)公差為,利用等差數(shù)列的通項(xiàng)公式和題中給出的條件列出關(guān)于首項(xiàng)與公差的方程,通過解方程解出首項(xiàng)與公差,將首項(xiàng)與公差代入等差數(shù)列通項(xiàng)公式即可求得數(shù)列的通項(xiàng)公式,首項(xiàng)與公差和n=60代入等差數(shù)列的前n項(xiàng)和公式即可求出.
試題解析:設(shè)公差為,由題意知,解得,
所以,
所以==5700.
考點(diǎn):等差數(shù)列通項(xiàng)公式;等差數(shù)列前n項(xiàng)和公式
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知等差數(shù)列的公差為2,前項(xiàng)和為,且成等比數(shù)列.
(1)求數(shù)列的通項(xiàng)公式;(2)令,求數(shù)列的前項(xiàng)和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知數(shù)列中,,前項(xiàng)和.
(1) 求數(shù)列的通項(xiàng)公式;
(2) 設(shè)數(shù)列的前項(xiàng)和為,是否存在實(shí)數(shù),使得對(duì)一切正整數(shù)都
成立?若存在,求出的最小值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知數(shù)列的前項(xiàng)和為,且=,數(shù)列中,,點(diǎn)在直線上.
(1)求數(shù)列的通項(xiàng)和;
(2) 設(shè),求數(shù)列的前n項(xiàng)和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知等差數(shù)列{an}的前n項(xiàng)和為Sn,且a2=1,S11=33.
(1)求{an}的通項(xiàng)公式;
(2)設(shè),求證:數(shù)列{bn}是等比數(shù)列,并求其前n項(xiàng)和Tn.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知數(shù)列中,.(1)若,求;(2)若數(shù)列為等差數(shù)列,且,求數(shù)列的通項(xiàng)公式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
在等比數(shù)列中,
(1)求數(shù)列的通項(xiàng)公式;
(2)令,求數(shù)列的前n項(xiàng)和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
等差數(shù)列的前n項(xiàng)和為,已知,為整數(shù),且.
(1)求的通項(xiàng)公式;
(2)設(shè),求數(shù)列的前n項(xiàng)和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
設(shè)等差數(shù)列的前項(xiàng)和為,則,,,成等差數(shù)列.類比以上結(jié)論有:設(shè)等比數(shù)列的前項(xiàng)積為,則,______,________成等比數(shù)列.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com