【題目】在平面直角坐標(biāo)系xOy中,傾斜角為α的直線l的參數(shù)方程為(t為參數(shù)).以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,曲線C的極坐標(biāo)方程是ρcos2θ-4sin θ=0.
(1)寫出直線l的普通方程和曲線C的直角坐標(biāo)方程;
(2)已知點(diǎn)P(1,0).若點(diǎn)M的極坐標(biāo)為,直線l經(jīng)過點(diǎn)M且與曲線C相交于A,B兩點(diǎn),設(shè)線段AB的中點(diǎn)為Q,求|PQ|的值.
【答案】(1)見解析;(2)3.
【解析】試題分析:(1)由參數(shù)方程化為直角坐標(biāo)方程和極坐標(biāo)化為直角坐標(biāo)方程得到直角坐標(biāo)方程;(2)聯(lián)立直線和曲線方程得到關(guān)于t的二次,根據(jù)中點(diǎn)坐標(biāo)公式得到點(diǎn)Q對應(yīng)的參數(shù)值為,進(jìn)而得到PQ的值.
解析:
(1)∵直線l的參數(shù)方程為 (t為參數(shù)),∴直線l的普通方程為y=tan α·(x-1).
由ρcos2θ-4sin θ=0得ρ2cos2θ-4ρsin θ=0,
即x2-4y=0.
∴曲線C的直角坐標(biāo)方程為x2=4y.
(2)∵點(diǎn)M的極坐標(biāo)為,
∴點(diǎn)M的直角坐標(biāo)為(0,1).
∴tan α=-1,直線l的傾斜角α=.
∴直線l的參數(shù)方程為 (t為參數(shù)).
代入x2=4y,得t2-6t+2=0.
設(shè)A,B兩點(diǎn)對應(yīng)的參數(shù)分別為t1,t2.
∵Q為線段AB的中點(diǎn),
∴點(diǎn)Q對應(yīng)的參數(shù)值為==3.
又點(diǎn)P(1,0),則|PQ|==3.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩人組成“星隊(duì)”參加猜成語活動,每輪活動由甲、乙各猜一個(gè)成語,在一輪活動中,如果兩人都猜對,則“星隊(duì)”得3分;如果只有一個(gè)人猜對,則“星隊(duì)”得1分;如果兩人都沒猜對,則“星隊(duì)”得0分.已知甲每輪猜對的概率是 ,乙每輪猜對的概率是 ;每輪活動中甲、乙猜對與否互不影響.各輪結(jié)果亦互不影響.假設(shè)“星隊(duì)”參加兩輪活動,求:
(1)“星隊(duì)”至少猜對3個(gè)成語的概率;
(2)“星隊(duì)”兩輪得分之和為X的分布列和數(shù)學(xué)期望EX.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=(2-a)x-2(1+ln x)+a,若函數(shù)f(x)在區(qū)間上無零點(diǎn),求實(shí)數(shù)a的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】電視傳媒公司為了了解某地區(qū)電視觀眾對某類體育節(jié)目的收視情況,隨機(jī)抽取了100名觀眾進(jìn)行調(diào)查.下面是根據(jù)調(diào)查結(jié)果繪制的觀眾日均收看該體育節(jié)目時(shí)間的頻率分布直方圖:
將日均收看該體育節(jié)目時(shí)間不低于40分鐘的觀眾稱為“體育迷”.
根據(jù)已知條件完成下面的2×2列聯(lián)表,并據(jù)此資料,你是否認(rèn)為“體育迷”與性別有關(guān)?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】我國是世界上嚴(yán)重缺水的國家,某市政府為了鼓勵居民節(jié)約用水,計(jì)劃調(diào)整居民生活用水收費(fèi)方案,擬確定一個(gè)合理的月用水量標(biāo)準(zhǔn)x(噸),一位居民的月用水量不超過x的部分按平價(jià)收費(fèi),超出x的部分按議價(jià)收費(fèi).為了了解居民用水情況,通過抽樣,獲得了某年100位居民每人的月均用水量(單位:噸),將數(shù)據(jù)按照[0,0.5),[0.5,1),…,[4,4.5)分成9組,制成了如圖所示的頻率分布直方圖.
(1)求直方圖中a的值;
(2)設(shè)該市有30萬居民,估計(jì)全市居民中月均用水量不低于3噸的人數(shù),并說明理由;
(3)若該市政府希望使85%的居民每月的用水量不超過標(biāo)準(zhǔn)x(噸),估計(jì)x的值,并說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知五面體,其中內(nèi)接于圓,是圓的直徑,四邊形為平行四邊形,且平面.
(1)證明:平面平面;
(2)若,,且二面角所成角的余弦值為,試求該幾何體的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)()在區(qū)間(0,)上至多取到兩次最大值,且在區(qū)間(,)上不單調(diào),則滿足條件的的個(gè)數(shù)是( 。
A. 6 B. 7 C. 8 D. 9
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,內(nèi)角A,B,C所對的邊分別是a,b,c.已知bsinA=3csinB,a=3, .
(1)求b的值;
(2)求 的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=-x2+2mx+7.
(Ⅰ)已知函數(shù)y=(x)在區(qū)間[1,3]上的最小值為4,求m的值;
(Ⅱ)若不等式f(x)≤x2-6x+11在區(qū)間[1,2]上恒成立,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com