【題目】已知四棱錐中,底面為菱形,平面,、分別是上的中點,直線與平面所成角的正弦值為上移動.

(Ⅰ)證明:無論點上如何移動,都有平面平面

(Ⅱ)求點恰為的中點時,二面角的余弦值.

【答案】(Ⅰ)見解析(Ⅱ).

【解析】

(Ⅰ)推導出AEPAAEAD,從而AE⊥平面PAD,由此能證明無論點FPC上如何移動,都有平面AEF⊥平面PAD

(Ⅱ)以A為原點,AEx軸,ADy軸,APz軸,建立空間直角坐標系,利用向量法能求出二面角CAFE的余弦值.

(Ⅰ)連接

∵底面為菱形,,

是正三角形

中點,∴

,∴

平面,平面

平面,平面

∴平面平面.

(Ⅱ)由(Ⅰ)得,,,兩兩垂直,所在直線分別為,軸建立如圖所示的空間直角坐標系,

平面

就是與平面所成的角,

,,

設(shè),,,

設(shè),

所以,

從而,∴,

,,,,,

,,

所以,

設(shè)是平面一個法向量,

,

平面,∴是平面的一個法向量,

∴二面角的余弦值為.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】某社區(qū)消費者協(xié)會為了解本社區(qū)居民網(wǎng)購消費情況,隨機抽取了100位居民作為樣本,就最近一年來網(wǎng)購消費金額(單位:千元),網(wǎng)購次數(shù)和支付方式等進行了問卷調(diào)査.經(jīng)統(tǒng)計這100位居民的網(wǎng)購消費金額均在區(qū)間內(nèi),按,,,分成6組,其頻率分布直方圖如圖所示.

(1)估計該社區(qū)居民最近一年來網(wǎng)購消費金額的中位數(shù);

(2)將網(wǎng)購消費金額在20千元以上者稱為“網(wǎng)購迷”,補全下面的列聯(lián)表,并判斷有多大把握認為“網(wǎng)購迷與性別有關(guān)系”;

合計

網(wǎng)購迷

20

非網(wǎng)購迷

45

合計

100

(3)調(diào)査顯示,甲、乙兩人每次網(wǎng)購采用的支付方式相互獨立,兩人網(wǎng)購時間與次數(shù)也互不. 影響.統(tǒng)計最近一年來兩人網(wǎng)購的總次數(shù)與支付方式,所得數(shù)據(jù)如下表所示:

網(wǎng)購總次數(shù)

支付寶支付次數(shù)

銀行卡支付次數(shù)

微信支付次數(shù)

80

40

16

24

90

60

18

12

將頻率視為概率,若甲、乙兩人在下周內(nèi)各自網(wǎng)購2次,記兩人采用支付寶支付的次數(shù)之和為,求的數(shù)學期望.

附:觀測值公式:

臨界值表:

0.01

0.05

0.025

0.010

0.005

0.001

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】記無窮數(shù)列的前n項中最大值為,最小值為,令,數(shù)列的前n項和為,數(shù)列的前n項和為

(1)若數(shù)列是首項為2,公比為2的等比數(shù)列,求

(2)若數(shù)列是等差數(shù)列,試問數(shù)列是否也一定是等差數(shù)列?若是,請證明;若不是,請舉例說明;

(3)若,求

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,設(shè)點,定義,其中為坐標原點,對于下列結(jié)論:

符合的點的軌跡圍成的圖形面積為8;

設(shè)點是直線:上任意一點,則;

設(shè)點是直線:上任意一點,則使得“最小的點有無數(shù)個”的必要條件是;

設(shè)點是圓上任意一點,則

其中正確的結(jié)論序號為  

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】義烏國際馬拉松賽,某校要從甲乙丙丁等人中挑選人參加比賽,其中甲乙丙丁人中至少有人參加且甲乙不同時參加,丙丁也不同時參加,則不同的報名方案有(

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】甲、乙兩人同時參加一個外貿(mào)公司的招聘,招聘分筆試與面試兩部分,先筆試后面試.甲筆試與面試通過的概率分別為0.8,0.5,乙筆試與面試通過的概率分別為0.8,0.4,且筆試通過了才能進入面試,面試通過則直接招聘錄用,兩人筆試與面試相互獨立互不影響.

(1)求這兩人至少有一人通過筆試的概率;

(2)求這兩人筆試都通過卻都未被錄用的概率;

(3)記這兩人中最終被錄用的人數(shù)為X,X的分布列和數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在三棱錐中,,HP點在平面ABC的投影,

證明:平面PHA;

AC與平面PBC所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的左、右焦點為,離心率為,點在橢圓上,且的面積的最大值為.

(1)求橢圓的方程;

(2)已知直線與橢圓交于不同的兩點,若在軸上存在點,使得,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知的展開式中第5項與第7項的二項數(shù)系數(shù)相等,且展開式的各項系數(shù)之和為1024,則下列說法正確的是(

A.展開式中奇數(shù)項的二項式系數(shù)和為256

B.展開式中第6項的系數(shù)最大

C.展開式中存在常數(shù)項

D.展開式中含項的系數(shù)為45

查看答案和解析>>

同步練習冊答案