二項(xiàng)式(
x
-
1
x
)9
的展開(kāi)式中常數(shù)項(xiàng)為A,則A=
 
考點(diǎn):二項(xiàng)式系數(shù)的性質(zhì)
專題:計(jì)算題,二項(xiàng)式定理
分析:先求出二項(xiàng)展開(kāi)式的通項(xiàng)公式,再令x的冪指數(shù)等于零,求得r的值,即可求得展開(kāi)式中常數(shù)項(xiàng).
解答: 解:二項(xiàng)式(
x
-
1
x
)9
的展開(kāi)式的通項(xiàng)公式為T(mén)r+1=
C
r
9
x
9-r
2
•(-1)r•x-r=(-1)r
C
r
9
x
9-3r
2

9-3r
2
=0,r=3,故展開(kāi)式中常數(shù)項(xiàng)為第四項(xiàng),
∴A=-
C
3
9
=-84,
故答案為:-84.
點(diǎn)評(píng):本題主要考查二項(xiàng)式定理的應(yīng)用,二項(xiàng)展開(kāi)式的通項(xiàng)公式,求展開(kāi)式中某項(xiàng)的系數(shù),屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(文科學(xué)生做)若函數(shù)f(x)對(duì)任意x1,x2∈D,都有|f(x1)-f(x2)|≤|x1-x2|成立,則稱f(x)為D上的“收縮”函數(shù)
(1)判斷函數(shù)f(x)=
1
4
x2+
1
2
x
在[-1,1]上是否是“收縮”函數(shù),并說(shuō)明理由;
(2)函數(shù)f(x)=
k
x+2
(k∈R)
,
    (i)討論函數(shù)f(x)=
k
x+2
(k∈R)
在x∈[-1,+∞)的單調(diào)性,并用定義證明;
   (ii)是否存在k∈R,使得f(x)=
k
x+2
在[-1,+∞)上為“收縮”函數(shù),若存在,求k的范圍;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知直線L過(guò)點(diǎn)P(2,1)且與L1:4x-3y=0的夾角為45°,求直線L的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某校高三年級(jí)有500名同學(xué),將他們的身高(單位:cm)數(shù)據(jù)繪制成頻率分布直方圖(如圖),現(xiàn)用分層抽樣的方法選取x名學(xué)生參加某項(xiàng)課外活動(dòng),已知從身高在[160,170)的學(xué)生中選取9人,則x=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

點(diǎn)P(1,-2)到拋物線y2=4x的焦點(diǎn)F的距離為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知
a
b
的夾角是60°,
a
=(2,0),
b
=(sinθ,cosθ),則|
a
+2
b
|
=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

給出下列命題:
①函數(shù)y=2-|x|為偶函數(shù);
②函數(shù)y=1是周期函數(shù);
③函數(shù)f(x)=2x-x2的零點(diǎn)有2個(gè);
④函數(shù)g(x)=|log2 x|-(
1
2
x在(0,+∞)上恰有兩個(gè)零點(diǎn)x1,x2且x1•x2<1.
其中真命題的序號(hào)為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

袋中裝有黑球和白球共7個(gè),從中任取2個(gè)球都是白球的概率為
1
7
.現(xiàn)有甲、乙兩人從袋中輪流、不放回地摸取1球,甲先取,乙后取,然后甲再取…直到袋中的球取完即終止.若摸出白球,則記2分,若摸出黑球,則記1分.每個(gè)球在每一次被取出的機(jī)會(huì)是等可能的.用ξ表示甲四次取球獲得的分?jǐn)?shù)之和.
(Ⅰ)求袋中原有白球的個(gè)數(shù);
(Ⅱ)求隨機(jī)變量ξ的概率分布列及期望Eξ.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

中心在坐標(biāo)原點(diǎn),焦點(diǎn)在y軸上的雙曲線的漸近線過(guò)點(diǎn)P(2,1),其離心率為
 

查看答案和解析>>

同步練習(xí)冊(cè)答案