數(shù)列{an}的前n項(xiàng)和記為Sna1=t,an+1=Sn+1(n∈N*),數(shù)列{bn}為等差數(shù)列,且b5=9,b7=13.
(I)t為何值,數(shù)列{an}是等比數(shù)列?
(II)在(I)的條件下,若cn=anbn(n∈N*),設(shè)TN為數(shù)列{cn}的前n項(xiàng)和,求Tn
分析:(I)由an+1=Sn+1,知當(dāng)n≥2時(shí),an=Sn-1+1,兩式相減,得an+1-an=an,故an+1=2an,由此能求出結(jié)果.
(II)由數(shù)列{bn}為等差數(shù)列,知公差d=
1
2
(b7-b5)
=
1
2
(13-9)=2
,所以bn=2n-1,由此入手利用錯(cuò)位相減法能夠求出Tn
解答:解:(I)∵an+1=Sn+1,
∴當(dāng)n≥2時(shí),an=Sn-1+1,
兩式相減,得an+1-an=an,
∴an+1=2an,
要使數(shù)列{an}是等比數(shù)列,當(dāng)且僅當(dāng)
a2
a1
=2
,即
t+1
t
=2,
∴t=1.
故t=1時(shí),數(shù)列{an}是等比數(shù)列.
(II)∵數(shù)列{bn}為等差數(shù)列,則公差d=
1
2
(b7-b5)
=
1
2
(13-9)=2

∴首項(xiàng)b1=b5-4d=9-4×2=1,
∴bn=2n-1,
由(I)知,an=2n-1,n∈N*,
∴cn=an•bn=2n-1,n∈N*
Tn=1×20+3×21+5×22+…+(2n-1)×2n-1,①
∴2Tn=1×21+3×22+5×23+…+(2n-3)×2n-1+(2n-1)×2n,②
①-②,得-Tn=1×20+2(21+22+23+…+2n-1)-(2n-1)×2n
∴Tn=3+(2n-3)×2n
點(diǎn)評(píng):本題考查等比數(shù)列的性質(zhì)及其應(yīng)用,考查數(shù)列的前n項(xiàng)和的求法.解題時(shí)要認(rèn)真審題,仔細(xì)解答,注意裂項(xiàng)求和法的合理運(yùn)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)等比數(shù)列{an}的公比q≠1,Sn表示數(shù)列{an}的前n項(xiàng)的和,Tn表示數(shù)列{an}的前n項(xiàng)的乘積,Tn(k)表示{an}的前n項(xiàng)中除去第k項(xiàng)后剩余的n-1項(xiàng)的乘積,即Tn(k)=
Tn
ak
(n,k∈N+,k≤n),則數(shù)列
SnTn
Tn(1)+Tn(2)+…+Tn(n)
的前n項(xiàng)的和是
a12
2-q-q-1
(n+nq-
q-qn+1+1-q1-n
1-q
a12
2-q-q-1
(n+nq-
q-qn+1+1-q1-n
1-q
(用a1和q表示)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若數(shù)列{an}的通項(xiàng)an=
1
pn-q
,實(shí)數(shù)p,q滿足p>q>0且p>1,sn為數(shù)列{an}的前n項(xiàng)和.
(1)求證:當(dāng)n≥2時(shí),pan<an-1;
(2)求證sn
p
(p-1)(p-q)
(1-
1
pn
)
;
(3)若an=
1
(2n-1)(2n+1-1)
,求證sn
2
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知Sn是數(shù)列{an}的前n項(xiàng)和,an>0,Sn=
a
2
n
+an
2
,n∈N*
(1)求證:{an}是等差數(shù)列;
(2)若數(shù)列{bn}滿足b1=2,bn+1=2an+bn,求數(shù)列{bn}的通項(xiàng)公式bn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•商丘二模)數(shù)列{an}的前n項(xiàng)和為Sn,若數(shù)列{an}的各項(xiàng)按如下規(guī)律排列:
1
2
,
1
3
,
2
3
1
4
,
2
4
3
4
,
1
5
2
5
,
3
5
,
4
5
…,
1
n
,
2
n
,…,
n-1
n
,…有如下運(yùn)算和結(jié)論:
①a24=
3
8

②數(shù)列a1,a2+a3,a4+a5+a6,a7+a8+a9+a10,…是等比數(shù)列;
③數(shù)列a1,a2+a3,a4+a5+a6,a7+a8+a9+a10,…的前n項(xiàng)和為Tn=
n2+n
4

④若存在正整數(shù)k,使Sk<10,Sk+1≥10,則ak=
5
7

其中正確的結(jié)論是
①③④
①③④
.(將你認(rèn)為正確的結(jié)論序號(hào)都填上)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

給出下列命題:
①若數(shù)列{an}的前n項(xiàng)和Sn=2n+1,則數(shù)列{an}為等比數(shù)列;
②在△ABC中,如果A=60°,a=
6
,b=4
,那么滿足條件的△ABC有兩解;
③設(shè)函數(shù)f(x)=x|x-a|+b,則函數(shù)f(x)為奇函數(shù)的充要條件是a2+b2=0;
④設(shè)直線系M:xcosθ+(y-2)sinθ=1(0≤θ≤2π),則M中的直線所能圍成的正三角形面積都相等.
其中真命題的序號(hào)是

查看答案和解析>>

同步練習(xí)冊(cè)答案