(本題滿(mǎn)分14分)
已知四邊形ABCD是正方形,P是平面ABCD外一點(diǎn),且PA=PB=PC=PD=AB=2,是棱的中點(diǎn).建立適當(dāng)?shù)目臻g直角坐標(biāo)系,利用空間向量方法解答以下問(wèn)題:
(1)求證:;
(2) 求證:
(3)求直線與直線所成角的余弦值.
解:連結(jié)AC、BD交于點(diǎn)O,連結(jié)OP。

∵四邊形ABCD是正方形,∴AC⊥BD
∵PA=PC,∴OP⊥AC,同理OP⊥BD,
以O(shè)為原點(diǎn),分別為軸的正方向,建立空間直角坐標(biāo)系 …2分

       …………………6分

…………………10分

…………………14分
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題滿(mǎn)分12分)
如圖,為正三角形,平面的中點(diǎn),

(1)求證:DM//面ABC;   
(2)平面平面。
(3)求直線AD與面AEC所成角的正弦值;

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

.(本小題滿(mǎn)分12分)如圖,在正方體中,
、分別為棱、的中點(diǎn).
(1)求證:∥平面
(2)求證:平面⊥平面;
(3)如果,一個(gè)動(dòng)點(diǎn)從點(diǎn)出發(fā)在正方體的
表面上依次經(jīng)過(guò)棱、、上的點(diǎn),最終又回到點(diǎn),指出整個(gè)路線長(zhǎng)度的最小值并說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

若a,b是異面直線,直線c∥a,則c與b的位置關(guān)系是 
A.相交B.異面C.平行D.異面或相交

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題滿(mǎn)分12分)
如圖,在正三棱柱ABC—A1B1C1中,BB1=2,BC=2,D為B1C1的中點(diǎn)。
(Ⅰ)證明:B1C⊥面A1BD;
(Ⅱ)求二面角B—AC—B1的大小。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(12分)
在三棱錐中,△ABC是邊長(zhǎng)為4的正三角形,平面,M、N分別為AB、SB的中點(diǎn)。

(1)證明:
(2)求二面角N-CM-B的大;
(3)求點(diǎn)B到平面CMN的距離。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題


(本小題滿(mǎn)分14分)
在三棱錐中,是邊長(zhǎng)為的正三角形,平面⊥平面,、分別為、的中點(diǎn)。
(1)證明:;
(2)求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知點(diǎn)O為正方體ABCD—A1B1C1D1底面ABCD的中心,則下列結(jié)論正確的是(   )
A.直線平面AB1C1B.直線OA1//直線BD1
C.直線直線ADD.直線OA1//平面CB1D1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

如圖,正四面體的頂點(diǎn)、、分別在兩兩垂直的三條射線、上,給出下列四個(gè)命題:  
①多面體是正三棱錐;
②直線平面;
③直線所成的角為;       
④二面角.
其中真命題有_______________(寫(xiě)出所有真命題的序號(hào)).

查看答案和解析>>

同步練習(xí)冊(cè)答案