【題目】已知雙曲線的漸近線方程為,拋物線的焦點與雙曲線的右焦點重合,過的直線交拋物線兩點,為坐標原點,若向量的夾角為,則的面積為_____.

【答案】

【解析】

根據(jù)雙曲線的幾何性質,求得拋物線的方程為,設直線的斜率為,則直線的方程為,代入拋物線的方程,由根與系數(shù)的關系,求得

,根據(jù)向量的數(shù)量積的運算,求得,即可求解的面積.

由題意,雙曲線,可得雙曲線的焦點在軸上,且,

又由漸近線方程為,所以,解得,即,

所以雙曲線的右焦點,

又因為拋物線的焦點與雙曲線的右焦點重合,即,

解得,所以拋物線的方程為,

設直線的斜率為,則直線的方程為,

代入拋物線的方程消去,可得

,由根與系數(shù)的關系,求得

,則,

又因為,

,解得,

所以的面積為

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)為常數(shù))的圖象在它們與坐標軸交點處的切線互相平行.

(1)若關于的不等式有解,求實數(shù)的取值范圍;

(2)對于函數(shù)公共定義域內(nèi)的任意實數(shù),我們把的值稱為兩函數(shù)在處的瞬間距離”.則函數(shù)的所有瞬間距離是否都大于2?請加以證明.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,四棱柱的底面是正方形,的交點,

。

(1)求證:平面;

(2)求二面角的余弦值。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】若定義在D上的函數(shù)f(x)滿足:對任意x∈D,存在常數(shù)M>0,都有-M<f(x)<M成立,則稱f(x)是D上的有界函數(shù),其中M稱為函數(shù)f(x)的上界。

(Ⅰ)判斷函數(shù)f(x)=-2x+2,x∈[0,2]是否是有界函數(shù),請說明理由;

(Ⅱ)若函數(shù)f(x)=1++,x∈[0,+∞)是以3為上界的有界函數(shù),求實數(shù)a的取值范圍。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),

(1)討論函數(shù)的單調性;

(2)若時,恒成立,求實數(shù)的取值范圍

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】閱讀材料:空間直角坐標系O﹣xyz中,過點P(x0,y0,z0)且一個法向量為=(a,b,c)的平面α的方程為a(x﹣x0)+b(y﹣y0)+c(z﹣z0)=0;過點P(x0,y0,z0)且一個方向向量為=(u,v,w)(uvw≠0)的直線l的方程為,閱讀上面材料,并解決下面問題:已知平面α的方程為x+2y﹣2z﹣4=0,直線l是兩平面3x﹣2y﹣7=0與2y﹣z+6=0的交線,則直線l與平面α所成角的大小為( 。

A. arcsinB. arcsin

C. arcsinD. arcsin

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】選修4-5:不等式選講

已知函數(shù).

(1)求不等式的解集;

(2)若恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)(a∈R).

(1)若曲線y=f(x)在x=e處切線的斜率為﹣1,求此切線方程;

(2)若f(x)有兩個極值點x1,x2,求a的取值范圍,并證明:x1x2>x1+x2

查看答案和解析>>

同步練習冊答案