(本小題滿分12分)設圓C:,此圓與拋物線有四個不同的交點,若在軸上方的兩交點分別為,,坐標原點為的面積為。
(1)求實數(shù)的取值范圍;
(2)求關于的函數(shù)的表達式及的取值范圍。

(1);(2),

解析試題分析:(1)得到,又因為解得
………… ………… … ……… …… …… …… …… …  ……… …  ………..4分
(2)設可得,
得到……… …  … …… … … … ……. . 6分
,所以整理得到
… … ……… …… …… …… …… …  ……… …  ………..8分
,所以…..10分
,所以… …… …… …… …… …  ……… ………..12分
考點:拋物線的簡單性質;圓與拋物線的綜合應用。
點評:本題考查了圓與拋物線位置關系的判斷,以及弦長公式,點到直線距離公式,向量的數(shù)量積公式的應用,用到公式較多,平時做題中應注意積累.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

直線與橢圓交于,兩點,已知
,,若且橢圓的離心率,又橢圓經過點,
為坐標原點.
(Ⅰ)求橢圓的方程;
(Ⅱ)若直線過橢圓的焦點為半焦距),求直線的斜率的值;

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

,分別是橢圓E:+=1(0﹤b﹤1)的左、右焦點,過的直線與E相交于A、B兩點,且,,成等差數(shù)列。
(Ⅰ)求
(Ⅱ)若直線的斜率為1,求b的值。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知中心在坐標原點,焦點在軸上的橢圓過點,且它的離心率.

(Ⅰ)求橢圓的標準方程;
(Ⅱ)與圓相切的直線交橢圓于兩點,若橢圓上一點滿足,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,設拋物線方程為,為直線上任意一點,過引拋物線的切線,切點分別為

(1)求證:三點的橫坐標成等差數(shù)列;
(2)已知當點的坐標為時,.求此時拋物線的方程。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知點軸上的動點,點軸上的動點,點為定點,且滿足,.
(Ⅰ)求動點的軌跡的方程;
(Ⅱ)過點且斜率為的直線與曲線交于兩點,試判斷在軸上是否存在點,使得成立,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分12分)
已知橢圓左、右焦點分別為F1、F2,點,點F2在線段PF1的中垂線上。
(1)求橢圓C的方程;
(2)設直線與橢圓C交于M、N兩點,直線F2M與F2N的傾斜角互補,求證:直線過定點,并求該定點的坐標。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分12分)
已知橢圓的右焦點,且,設短軸的一個端點為,原點到直線的距離為,過原點和軸不重合的直線與橢圓相交于兩點,且.
(1)求橢圓的方程;
(2)是否存在過點的直線與橢圓相交于不同的兩點,且使得成立?若存在,試求出直線的方程;若不存在,請說明理由

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本題滿分10分)已知直線與圓的交點為A、B,
(1)求弦長AB;
(2)求過A、B兩點且面積最小的圓的方程.

查看答案和解析>>

同步練習冊答案