【題目】某商場對甲、乙兩種品牌的商品進行為期100天的營銷活動,為調查者100天的日銷售情況,隨機抽取了10天的日銷售量(單位:件)作為樣本,樣本數(shù)據(jù)的莖葉圖如圖,若日銷量不低于50件,則稱當日為“暢銷日”.

(1)現(xiàn)從甲品牌日銷量大于40且小于60的樣本中任取兩天,求這兩天都是“暢銷日”的概率;

(2)用抽取的樣本估計這100天的銷售情況,請完成這兩種品牌100天銷量的列聯(lián)表,并判斷是否有的把握認為品牌與“暢銷日”天數(shù)有關.

附: (其中

0.050

0.010

0.001

3.841

6.635

10.828

暢銷日天數(shù)

非暢銷日天數(shù)

合計

甲品牌

乙品牌

合計

【答案】(1) ;

(2)

暢銷日天數(shù)

非暢銷日天數(shù)

合計

甲品牌

50

50

100

乙品牌

30

70

100

合計

80

120

200

的把握認為品牌與“暢銷日”天數(shù)有關.

【解析】試題分析:(1)由樹狀圖求得:從中任取2天的所有結果共15個,其中兩天都是暢銷日的結果共3個,故兩天都是暢銷日的概率.

(2)由二聯(lián)表可得,故有的把握認為品牌與“暢銷日”天數(shù)有關.

試題解析:(1)由題意知,甲品牌日銷量大于40且小于60的樣本中暢銷日有三天,分別記為 , ,非暢銷日有三天,分別記為 , .

從中任取2天的所有結果有: , , , , , , , , , , , , 共15個.

根據(jù)題意,這些基本事件的出現(xiàn)是等可能的.

其中兩天都是暢銷日的結果有: , , 共3個,

所以兩天都是暢銷日的概率.

(2)

暢銷日天數(shù)

非暢銷日天數(shù)

合計

甲品牌

50

50

100

乙品牌

30

70

100

合計

80

120

200

所以有的把握認為品牌與“暢銷日”天數(shù)有關.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在直角△ABC中,AB⊥BC,D為BC邊上異于B、C的一點,以AB為直徑作⊙O,并分別交AC,AD于點E,F(xiàn).

(1)證明:C,E,F(xiàn),D四點共圓;
(2)若D為BC的中點,且AF=3,F(xiàn)D=1,求AE的長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知直線l1經(jīng)過兩點(-1,-2)、(-1,4),直線l2經(jīng)過兩點(2,1)、(x,6),且l1||l2 , 則x=( ).
A.2
B.-2
C.4
D.1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,四棱錐,側面是邊長為2的正三角形,且與底面垂直,底面的菱形, 為棱上的動點,且.

(1)求證: ;

(2)試確定的值,使得二面角的平面角余弦值為.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知命題p:空間兩向量 =(1,﹣1,m)與 =(1,2,m)的夾角不大于 ;命題q:雙曲線 =1的離心率e∈(1,2).若¬q與p∧q均為假命題,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在空間四邊形ABCD中,平面ABD⊥平面BCD,且DA⊥平面ABC,則△ABC的形狀是(
A.銳角三角形
B.直角三角形
C.鈍角三角形
D.不能確定

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某商店計劃每天購進某商品若干件,商店每銷售1件該商品可獲利50元.若供大于求,剩余商品全部退回,則每件商品虧損10元;若供不應求,則從外部調劑,此時每件調劑商品可獲利30元.

若商店一天購進該商品10件,求當天的利潤y單位:元關于當天需求量n單位:件,n∈N的函數(shù)解析式;

商店記錄了50天該商品的日需求量單位:件,整理得下表:

日需求量n

8

9

10

11

12

頻數(shù)

10

10

15

10

5

假設該店在這50天內每天購進10件該商品,求這50天的日利潤單位:元的平均數(shù);

若該店一天購進10件該商品,記“當天的利潤在區(qū)間”為事件A,求PA的估計值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知直線m∥平面α,則下列命題中正確的是(
A.α內所有直線都與直線m異面
B.α內所有直線都與直線m平行
C.α內有且只有一條直線與直線m平行
D.α內有無數(shù)條直線與直線m垂直

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知集合M={(x,y)|f(x,y)=0},若對任意P1(x1 , y1)∈M,均不存在P2(x2 , y2)∈M使得x1x2+y1y2=0成立,則稱集合M為“好集合”,下列集合為“好集合”的是( 。
A.M={(x,y)|y﹣lnx=0}
B.M={(x,y)|y﹣x2﹣1=0}
C.M={(x,y)|(x﹣2)2+y2﹣2=0}
D.M={(x,y)|x2﹣2y2﹣1=0}

查看答案和解析>>

同步練習冊答案