【題目】設(shè)Sn是數(shù)列{an}的前n項和,已知a1=3,an+1=2Sn+3(n∈N)
(I)求數(shù)列{an}的通項公式;
(Ⅱ)令bn=(2n﹣1)an , 求數(shù)列{bn}的前n項和Tn

【答案】解:(I)∵an+1=2Sn+3,∴當n≥2時,an=2Sn1+3, ∴an+1﹣an=2(Sn﹣Sn1)=2an , 化為an+1=3an
∴數(shù)列{an}是等比數(shù)列,首項為3,公比為3.
∴an=3n
(II)bn=(2n﹣1)an=(2n﹣1)3n
∴數(shù)列{bn}的前n項和Tn=3+3×32+5×33+…+(2n﹣1)3n ,
3Tn=32+3×33+…+(2n﹣3)3n+(2n﹣1)3n+1 ,
∴﹣2Tn=3+2(32+33+…+3n)﹣(2n﹣1)3n+1= ﹣3﹣(2n﹣1)3n+1=(2﹣2n)3n+1﹣6,
∴Tn=(n﹣1)3n+1+3
【解析】(I)利用遞推關(guān)系與等比數(shù)列的通項公式即可得出;(II)利用“錯位相減法”與等比數(shù)列的其前n項和公式即可得出.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知點P為橢圓 =1上的動點,EF為圓N:x2+(y﹣1)2=1的任一直徑,求 最大值和最小值是(
A.16,12﹣4
B.17,13﹣4
C.19,12﹣4
D.20,13﹣4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某校100名學(xué)生數(shù)學(xué)競賽成績的頻率分布直方圖如圖所示,成績分組區(qū)間是:[50,60),[60,70),[70,80),[80,90),[90,100],則該次數(shù)學(xué)成績在[50,60)內(nèi)的人數(shù)為(
A.20
B.15
C.10
D.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,C> ,若函數(shù)y=f(x)在[0,1]上為單調(diào)遞減函數(shù),則下列命題正確的是(
A.f(cosA)>f(cosB)
B.f(sinA)>f(sinB)
C.f(sinA)>f(cosB)
D.f(sinA)<f(cosB)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知四棱錐P﹣ABCD的底面為菱形,∠BCD=120°,AB=PC=2,AP=BP=
(Ⅰ)求證:AB⊥PC;
(Ⅱ)求點D到平面PAC的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】等比數(shù)列{an}的各項均為正數(shù),且a5a6+a4a7=18,則log3a1+log3a2+…+log3a10=(
A.5
B.9
C.log345
D.10

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在以下關(guān)于向量的命題中,不正確的是(
A.若向量 ,向量 (xy≠0),則
B.若四邊形ABCD為菱形,則
C.點G是△ABC的重心,則
D.△ABC中, 的夾角等于A

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐P﹣ABCD中,AD∥BC,且BC=2AD,AD⊥CD,PB⊥CD,點E在棱PD上,且PE=2ED.
(1)求證:平面PCD⊥平面PBC;
(2)求證:PB∥平面AEC.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知向量 =(m,cos2x), =(sin2x,n),設(shè)函數(shù)f(x)= ,且y=f(x)的圖象過點( , )和點( ,﹣2).
(1)求m,n的值;
(2)將y=f(x)的圖象向左平移φ(0<φ<π)個單位后得到函數(shù)y=g(x)的圖象.若y=g(x)的圖象上各最高點到點(0,3)的距離的最小值為1,求y=g(x)的單調(diào)增區(qū)間.

查看答案和解析>>

同步練習(xí)冊答案