【題目】已知直線l:x﹣y=1與圓M:x2+y2﹣2x+2y﹣1=0相交于A,C兩點,點B,D分別在圓M上運動,且位于直線AC兩側(cè),則四邊形ABCD面積的最大值為 .
【答案】
【解析】解:把圓M:x2+y2﹣2x+2y﹣1=0化為標準方程:(x﹣1)2+(y+1)2=3,圓心(1,﹣1),半徑r= .
直線與圓相交,由點到直線的距離公式的弦心距d= = ,
由勾股定理的半弦長= = ,所以弦長|AB|=2× = .
又B,D兩點在圓上,并且位于直線AC的兩側(cè),
四邊形ABCD的面積可以看成是兩個三角形△ABC和△ACD的面積之和,
如圖所示,
當B,D為如圖所示位置,即BD為弦AC的垂直平分線時(即為直徑時),
兩三角形的面積之和最大,即四邊形ABCD的面積最大,
最大面積為:S= ×|AB|×|CE|+ ×|AB|×|DE|
= = .
所以答案是: .
科目:高中數(shù)學 來源: 題型:
【題目】已知正方形的中心為直線和直線的交點,其一邊所在直線方程為
(1)寫出正方形的中心坐標;
(2)求其它三邊所在直線的方程(寫出一般式).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知直線l的參數(shù)方程為 (t為參數(shù)),曲線C的參數(shù)方程為 (θ為參數(shù))
(1)以原點O為極點,以x軸正半軸為極軸(與直角坐標系xOy取相同的長度單位)建立極坐標系,若點P的極坐標為(4, ),判斷點P與直線l的位置關(guān)系;
(2)設(shè)點Q是曲線C上的一個動點,利用曲線C的參數(shù)方程求Q到直線l的距離的最大值與最小值的差.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】函數(shù)f(x)=6cos2 + sinωx﹣3(ω>2)在一個周期內(nèi)的圖象如圖所示,A為圖象的最高點,B,C為圖象與x軸的交點,且ABC為正三角形.
(1)求ω的值;
(2)求函數(shù)f(x)的值域.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知a∈R,函數(shù)f(x)=log2( +a).
(1)當a=5時,解不等式f(x)>0;
(2)若關(guān)于x的方程f(x)﹣log2[(a﹣4)x+2a﹣5]=0的解集中恰好有一個元素,求a的取值范圍.
(3)設(shè)a>0,若對任意t∈[ ,1],函數(shù)f(x)在區(qū)間[t,t+1]上的最大值與最小值的差不超過1,求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓C: =1(a>b>0),離心率為 ,左準線方程是x=﹣2,設(shè)O為原點,點A在橢圓C上,點B在直線y=2上,且OA⊥OB.
(1)求橢圓C的方程;
(2)求△AOB面積取得最小值時,線段AB的長度.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設(shè)橢圓的左、右焦點分別為F1,F2,P是橢圓上一點,|PF1|=λ|PF2| ,,則橢圓離心率的取值范圍為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設(shè)數(shù)列{an}為等差數(shù)列,數(shù)列{bn}為等比數(shù)列.若a1<a2 , b1<b2 , 且bi=ai2(i=1,2,3),則數(shù)列{bn}的公比為 .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知曲線C1的極坐標方程為ρ2cos2θ=18,曲線C2的極坐標方程為θ= ,曲線C1 , C2相交于A,B兩點.
(1)求A,B兩點的極坐標;
(2)曲線C1與直線 (t為參數(shù))分別相交于M,N兩點,求線段MN的長度.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com