精英家教網(wǎng)如圖,已知F1,F(xiàn)2是橢圓C:
x2
a2
+
y2
b2
=1
(a>b>0)的左、右焦點(diǎn),點(diǎn)P在橢圓C上,線段PF2與圓x2+y2=b2相切于點(diǎn)Q,且點(diǎn)Q為線段PF2的中點(diǎn),則橢圓C的離心率為
 
分析:本題考察的知識(shí)點(diǎn)是平面向量的數(shù)量積的運(yùn)算,及橢圓的簡(jiǎn)單性質(zhì),由F1、F2是橢圓 C:
x2
a2
+
y2
b2
=1
(a>b>0)的左、右焦點(diǎn),點(diǎn)P在橢圓C上,線段PF2與圓x2+y2=b2相切于點(diǎn)Q,且點(diǎn)Q為線段PF2的中點(diǎn),連接OQ,F(xiàn)1P后,我們易根據(jù)平面幾何的知識(shí),根據(jù)切線的性質(zhì)及中位線的性質(zhì)得到PF2⊥PF1,并由此得到橢圓C的離心率.
解答:精英家教網(wǎng)解:連接OQ,F(xiàn)1P如下圖所示:
則由切線的性質(zhì),則OQ⊥PF2
又由點(diǎn)Q為線段PF2的中點(diǎn),O為F1F2的中點(diǎn)
∴OQ∥F1P
∴PF2⊥PF1
故|PF2|=2a-2b,
且|PF1|=2b,|F1F2|=2c,
則|F1F2|2=|PF1|2+|PF2|2
得4c2=4b2+4(a2-2ab+b2
解得:b=
2
3
a
則c=
5
3
a

故橢圓的離心率為:
5
3

故答案為:
5
3
點(diǎn)評(píng):本題涉及等量關(guān)系轉(zhuǎn)為不等關(guān)系,在與所求量有關(guān)的參量上作文章是實(shí)現(xiàn)轉(zhuǎn)化的關(guān)鍵,還有離心率的求解問(wèn)題,關(guān)鍵是根據(jù)題設(shè)條件獲得關(guān)于a,b,c的關(guān)系式,最后化歸為a,c(或e)的關(guān)系式,利用方程求解.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,已知F1、F2是橢圓C:
x2
a2
+
y2
b2
=1
(a>b>0)的左、右焦點(diǎn),點(diǎn)P在橢圓C上,線段PF2與圓x2+y2=b2相切于點(diǎn)Q,且點(diǎn)Q為線段PF2的中點(diǎn),則
PF1
PF2
=
 
;橢圓C的離心率為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•鷹潭一模)如圖,已知F1,F(xiàn)2是橢圓C:
x2
a2
+
y2
b2
=1
(a>b>0)的左、右焦點(diǎn),點(diǎn)P在橢圓C上,線段PF2與圓x2+y2=b2相切于點(diǎn)Q,且點(diǎn)Q為線段PF2的中點(diǎn),則橢圓C的離心率為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知F1、F2分別為橢圓C1
y2
a2
+
x2
b2
=1(a>b>0)
的上、下焦點(diǎn),其中F1也是拋物線C2x2=4y的焦點(diǎn),點(diǎn)M是C1與C2在第二象限的交點(diǎn),且|MF1|=
5
3

(1)求橢圓C1的方程;
(2)已知點(diǎn)P(1,3)和圓O:x2+y2=b2,過(guò)點(diǎn)P的動(dòng)直線l與圓O相交于不同的兩點(diǎn)A,B,在線段AB上取一點(diǎn)Q,滿足:
AP
=-λ
PB
AQ
QB
(λ≠0且λ≠±1),
求證:點(diǎn)Q總在某條定直線上.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,已知F1、F2是橢圓
x2
172
+
y2
152
=1
的左、右焦點(diǎn),A是橢圓短軸的一個(gè)端點(diǎn),P是橢圓上任意一點(diǎn),過(guò)F1引∠F1PF2的外角平分線的垂線,垂足為Q,則|AQ|的最大值為
 

查看答案和解析>>

同步練習(xí)冊(cè)答案