12.已知在數(shù)列{an}中,a1=-1,an+1=2an-3,則a5等于-61.

分析 利用數(shù)列的遞推關(guān)系式逐步求解即可.

解答 解:在數(shù)列{an}中,a1=-1,an+1=2an-3,
則a2=2a1-3=-5,
a3=2a2-3=-13,
a4=2a3-3=-29,
a5=2a4-3=-61.
故答案為:-61.

點(diǎn)評(píng) 本題考查數(shù)列的遞推關(guān)系式的應(yīng)用,考查計(jì)算能力.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.若$\overrightarrow{a}$與$\overrightarrow$-$\overrightarrow{c}$都是非零向量,則“$\overrightarrow{a}$•$\overrightarrow$=$\overrightarrow{a}$•$\overrightarrow{c}$”是“$\overrightarrow{a}$⊥($\overrightarrow$-$\overrightarrow{c}$)”的( 。
A.充分但非必要條件B.必要但非充分條件
C.充要條件D.既非充分也非必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.函數(shù)y=2$\sqrt{x}$+1的值域?yàn)閇1,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知cos(α+$\frac{π}{4}}$)=$\frac{3}{5}$,$\frac{π}{2}$≤α<$\frac{3π}{2}$,則sin2α=( 。
A.$-\frac{4}{5}$B.$\frac{4}{5}$C.$-\frac{7}{25}$D.$\frac{7}{25}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.下列程序框圖對(duì)應(yīng)的函數(shù)是(  )
A.f(x)=xB.f(x)=-xC.f(x)=|x|D.f(x)=-|x|

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.探究函數(shù)f(x)=2x+$\frac{8}{x}$,x∈(0,+∞)最小值,并確定取得最小值時(shí)x的值.列表如下:
x0.511.51.71.922.12.22.33457
y17108.348.18.0188.018.048.088.61011.615.14
請(qǐng)觀察表中y值隨x值變化的特點(diǎn),完成以下的問題.
(1)函數(shù)f(x)=2x+$\frac{8}{x}$(x>0)在區(qū)間(0,2)上遞減;函數(shù)f(x)=2x+$\frac{8}{x}$(x>0)在區(qū)間(2,+∞)上遞增.當(dāng)x=2時(shí),y最小=8.
(2)證明:函數(shù)f(x)=2x+$\frac{8}{x}$(x>0)在區(qū)間(0,2)遞減.
(3)思考:函數(shù)f(x)=2x+$\frac{8}{x}$(x<0)時(shí),有最值嗎?是最大值還是最小值?此時(shí)x為何值?(直接回答結(jié)果,不需證明)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.若不等式組$\left\{\begin{array}{l}{x-y≥0}\\{2x+y≤2}\\{y≥0}\\{x+y≤a}\end{array}\right.$,表示的平面區(qū)域是一個(gè)三角形區(qū)域,則a的取值范圍是( 。
A.a≥$\frac{4}{3}$B.0<a≤1C.1≤a≤$\frac{4}{3}$D.0<a≤1或a≥$\frac{4}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.有一個(gè)底面圓的半徑為1,高為2的圓柱,點(diǎn)O1,O2分別為這個(gè)圓柱上底面和下底面的圓心,在這個(gè)圓柱內(nèi)隨機(jī)取一點(diǎn)P,則點(diǎn)P到點(diǎn)O1,O2的距離都大于1的概率為$\frac{1}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.關(guān)于下列命題:
①若函數(shù)f(3x+1)的定義域?yàn)椋?∞,0),則函數(shù)f(x)的定義域?yàn)椋?∞,1);
②若函數(shù)f(x)的定義域?yàn)椋?∞,1),函數(shù)f($\frac{1}{x}$)的定義域?yàn)椋?∞,1);
③若函數(shù)y=x2的值域是{y|0≤y≤4},則它的定義域一定是{x|-2≤x≤2};
④若函數(shù)y=$\frac{1}{x}$的定義域是{x|x>2},則它的值域是{y|y≤$\frac{1}{2}$};
其中不正確的命題的序號(hào)是②③④.
( 注:把你認(rèn)為不正確的命題的序號(hào)都填上).

查看答案和解析>>

同步練習(xí)冊(cè)答案