【題目】如圖,正三棱柱所有棱長(zhǎng)都是2,D棱AC的中點(diǎn),E是棱的中點(diǎn),AE交于點(diǎn)H.
(1)求證:平面;
(2)求二面角的余弦值;
(3)求點(diǎn)到平面的距離.
【答案】(1)參考解析;(2) ;(3)
【解析】
試題分析:(1)由正三棱柱,可得平面ACB⊥平面.又DB⊥AC.所以如圖建立空間直角坐標(biāo)系.分別點(diǎn)A,E,B,D, 的坐標(biāo),得出相應(yīng)的向量.即可得到向量AE與向量BD,向量的數(shù)量積為零.即可得直線平面.
(2)由平面,平面分別求出這兩個(gè)平面的法向量,根據(jù)法向量的夾角得到二面角的余弦值(根據(jù)圖形取銳角).
(3)點(diǎn)到平面的距離,轉(zhuǎn)化為直線與法向量的關(guān)系,再通過(guò)解三角形的知識(shí)即可得點(diǎn)到平面的距離.本小題關(guān)鍵是應(yīng)用解三角形的知識(shí).
試題解析:(1)證明:建立如圖所示,
∵
∴ 即AE⊥A1D, AE⊥BD
∴AE⊥面A1BD
(2)由 ∴取
設(shè)面AA1B的法向量為 ,
由圖可知二面角D—BA1—A的余弦值為
(3),平面A1BD的法向量取
則B1到平面A1BD的距離d=
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】寫(xiě)出由下列各組命題構(gòu)成的“p或q”“p且q”以及“非p”形式的命題,并判斷它們的真假:
(1)p:3是素?cái)?shù),q:3是偶數(shù);
(2)p:x=-2是方程x2+x-2=0的解,q:x=1是方程x2+x-2=0的解.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)= (x∈R),e是自然對(duì)數(shù)的底.
(1)計(jì)算f(ln2)的值;
(2)證明函數(shù)f(x)是奇函數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】解答
(1)已知全集U={x|﹣5≤x≤10,x∈Z},集合M={x|0≤x≤7,x∈Z},N={x|﹣2≤x<4,x∈Z},求(UN)∩M(分別用描述法和列舉法表示結(jié)果)
(2)已知全集U=A∪B={0,1,2,3,4,5,6,7,8,9,10},若集合A∩UB={2,4,6,8},求集合B;
(3)已知集合P={x|ax2+2ax+1=0,a∈R,x∈R},當(dāng)集合P只有一個(gè)元素時(shí),求實(shí)數(shù)a的值,并求出這個(gè)元素.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知,命題橢圓C1: 表示的是焦點(diǎn)在軸上的橢圓,命題對(duì),直線與橢圓C2: 恒有公共點(diǎn).
(1)若命題“”是假命題,命題“”是真命題,求實(shí)數(shù)的取值范圍.
(2)若真假時(shí),求橢圓C1、橢圓C2的上焦點(diǎn)之間的距離d的范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】等腰直角三角形ABC的直角頂點(diǎn)A在x軸的正半軸上,B在y軸的正半軸上,C在第一象限,設(shè)∠BAO=θ(O為坐標(biāo)原點(diǎn)),AB=AC=2,當(dāng)OC的長(zhǎng)取得最大值時(shí),tanθ的值為( )
A.
B.﹣1+
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某班50名學(xué)生在一次百米測(cè)試中,成績(jī)?nèi)拷橛?3秒與18秒之間,將測(cè)試結(jié)果按如下方式分成五組:第一組,第二組,…,第五組,如圖是按上述分組方法得到的頻率分布直方圖.
(Ⅰ)根據(jù)頻率分布直方圖,估計(jì)這50名學(xué)生百米測(cè)試成績(jī)的中位數(shù)和平均數(shù)(精確到0.1).
(Ⅱ)若從第一、五組中隨機(jī)取出三名學(xué)生成績(jī),設(shè)取自第一組的個(gè)數(shù)為,求的分布列,期望及方差.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在直三棱柱中, ,點(diǎn)分別為的中點(diǎn).
(1)求證: 平面;
(2)求三棱錐的體積(錐體的體積公式,其中為底面面積, 為高)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知△ABC的角A、B、C所對(duì)的邊分別是a、b、c,設(shè)向量 , , .
(1)若 ∥ ,求證:△ABC為等腰三角形;
(2)若 ⊥ ,邊長(zhǎng)c=2,角C= ,求△ABC的面積.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com