已知函數(shù)是定義在上的奇函數(shù),當(dāng)時(shí), (其中e是自然界對數(shù)的底,)
(Ⅰ)設(shè),求證:當(dāng)時(shí),;
(Ⅱ)是否存在實(shí)數(shù)a,使得當(dāng)時(shí),的最小值是3 ?如果存在,求出實(shí)數(shù)a的值;如果不存在,請說明理由。
(Ⅰ)設(shè),則,所以
又因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012052603063577712104/SYS201205260309099178784642_DA.files/image004.png">是定義在上的奇函數(shù),所以
故函數(shù)的解析式為 …………………3分
證明:當(dāng)且
時(shí),,設(shè)
因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012052603063577712104/SYS201205260309099178784642_DA.files/image011.png">,所以當(dāng)時(shí),,此時(shí)單調(diào)遞減;當(dāng)時(shí),,此時(shí)單調(diào)遞增,所以
又因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012052603063577712104/SYS201205260309099178784642_DA.files/image017.png">,所以當(dāng)時(shí),,此時(shí)單調(diào)遞減,所以
所以當(dāng)時(shí),即 ……………………6分
(Ⅱ)解:假設(shè)存在實(shí)數(shù),使得當(dāng)時(shí),有最小值是3,則
(�。┊�(dāng),時(shí),.在區(qū)間上單調(diào)遞增,,不滿足最小值是3
(ⅱ)當(dāng),時(shí),,在區(qū)間上單調(diào)遞增,,也不滿足最小值是3
(ⅲ)當(dāng),由于,則,故函數(shù) 是上的增函數(shù).
所以,解得(舍去)
(ⅳ)當(dāng)時(shí),則
當(dāng)時(shí),,此時(shí)函數(shù)是減函數(shù);
當(dāng)時(shí),,此時(shí)函數(shù)是增函數(shù).
所以,解得
綜上可知,存在實(shí)數(shù),使得當(dāng)時(shí),有最小值3
【解析】(Ⅰ),設(shè),證明,(Ⅱ)的最小值是3,討論a的值對函數(shù)最小值的影響。
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源:2015屆廣西柳州鐵路一中高一上學(xué)期第一次月考數(shù)學(xué)試卷(解析版) 題型:解答題
已知函數(shù)是定義在上的奇函數(shù),且。
(1)求函數(shù)的解析式;
(2)用單調(diào)性的定義證明在上是增函數(shù);
(3)解不等式。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2015屆遼寧省本溪市高一上學(xué)期第一次月考數(shù)學(xué)試卷(解析版) 題型:解答題
(12分)已知函數(shù)是定義在上的奇函數(shù),且,
(1)確定函數(shù)的解析式;
(2)用定義證明在(-1 ,1)上是增函數(shù);
(3)解不等式
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013屆廣東省高二下期中文科數(shù)學(xué)試卷(解析版) 題型:選擇題
已知函數(shù)是定義在上的以5為周期的奇函數(shù), 若,
,則a的取值范圍是 ( )
A. B.
C. D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com