下列函數(shù),在其定義域中,既是奇函數(shù)又是減函數(shù)的是
試題分析:
在定義域上是奇函數(shù),但不單調(diào);
為非奇非偶函數(shù);
在定義域上是奇函數(shù),但不單調(diào).所以選
.
練習(xí)冊系列答案
相關(guān)習(xí)題
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
已知m為常數(shù),函數(shù)
為奇函數(shù).
(1)求m的值;
(2)若
,試判斷
的單調(diào)性(不需證明);
(3)若
,存在
,使
,求實數(shù)k的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
已知函數(shù)
.
(Ⅰ)求函數(shù)
的單調(diào)遞增區(qū)間;
(Ⅱ)當(dāng)
時,在曲線
上是否存在兩點
,使得曲線在
兩點處的切線均與直線
交于同一點?若存在,求出交點縱坐標(biāo)的取值范圍;若不存在,請說明理由;
(Ⅲ)若
在區(qū)間
存在最大值
,試構(gòu)造一個函數(shù)
,使得
同時滿足以下三個條件:①定義域
,且
;②當(dāng)
時,
;③在
中使
取得最大值
時的
值,從小到大組成等差數(shù)列.(只要寫出函數(shù)
即可)
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
已知偶函數(shù)
在區(qū)間
上單調(diào)遞增,在區(qū)間
上單調(diào)遞減,且滿足
,則不等式
的解集是( )
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
下列函數(shù)中,既是偶函數(shù),又在區(qū)間(1,2)內(nèi)是增函數(shù)的為 ( )
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
下列函數(shù)中既是奇函數(shù)又在區(qū)間
上單調(diào)遞減的是( )
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
函數(shù)
的最大值為( )
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
設(shè)函數(shù)
是定義在R上的奇函數(shù),且當(dāng)x
0時,
單調(diào)遞減,若數(shù)列
是等差數(shù)列,且
,則
的值 ( )
A.恒為負(fù)數(shù) | B.恒為0 | C.恒為正數(shù) | D.可正可負(fù) |
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
若
,則實數(shù)
的取值范圍是( )
查看答案和解析>>