【題目】設(shè)等差數(shù)列是無窮數(shù)列,且各項(xiàng)均為互不相同的正整數(shù),其前項(xiàng)和為,數(shù)列滿足.

(1)若,求的值;

(2)若數(shù)列為等差數(shù)列,求;

(3)在(1)的條件下,求證:數(shù)列中存在無窮多項(xiàng)(按原來的順序)成等比數(shù)列.

【答案】(1);(2);(3)證明見解析.

【解析】試題分析:(1)列方程組求得進(jìn)而可得結(jié)果;(2)為等差數(shù)列可得結(jié)合可得從而可得結(jié)果;(3)由可得對任意的, 都是中的項(xiàng).

試題解析:(1)設(shè)等差數(shù)列的公差為

因?yàn)闊o窮數(shù)列的各項(xiàng)均為互不相同的正整數(shù),所以,

(1)由得, ,

解得,所以;

(2)因?yàn)閿?shù)列為等差數(shù)列,所以,即

所以,解得已舍),

此時(shí), ;

(3)由(1)知,等差數(shù)列的通項(xiàng)公式,

下證:對任意的, 都是中的項(xiàng),

證明:當(dāng)時(shí),因?yàn)?/span>,

所以

,其中,

時(shí),

所以對任意的, 都是中的項(xiàng),

所以,數(shù)列中存在無窮項(xiàng)(按原來的順序)成等比數(shù)列.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在如圖所示的幾何體中,四邊形ABCD為正方形, 為直角三角形, ,且.

1)證明:平面平面;

2)若AB=2AE,求異面直線BEAC所成角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)若曲線在點(diǎn)處與直線相切,求的值;

(2)若函數(shù)有兩個(gè)零點(diǎn),,試判斷的符號,并證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)為數(shù)列的前項(xiàng)和,對任意的,都有,數(shù)列滿足, .

(1)求證:數(shù)列是等比數(shù)列,并求的通項(xiàng)公式;

(2)求數(shù)列的通項(xiàng)公式;

(3)求數(shù)列的前項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】第十二屆全國人民代表大會(huì)第五次會(huì)議和政協(xié)第十二屆全國委員會(huì)第五次會(huì)議(簡稱兩會(huì))分別于2017年3月5日和3月3日在北京開幕,某高校學(xué)生會(huì)為了解該校學(xué)生對全國兩會(huì)的關(guān)注情況,隨機(jī)調(diào)查了該校200名學(xué)生,并將這200名學(xué)生分為對兩會(huì)“比較關(guān)注”與“不太關(guān)注”兩類,已知這200名學(xué)生中男生比女生多20人,對兩會(huì)“比較關(guān)注”的學(xué)生中男生人數(shù)比女生人數(shù)之比為,對兩會(huì)“不太關(guān)注”的學(xué)生中男生比女生少5人.

(Ⅰ)根據(jù)題意建立的列聯(lián)表,并判斷是否有的把握認(rèn)為男生與女生對兩會(huì)的關(guān)注有差異?

(Ⅱ)該校學(xué)生會(huì)從對兩會(huì)“比較關(guān)注”的學(xué)生中根據(jù)性別進(jìn)行分層抽樣,從中抽取7人,再從這7人中隨機(jī)選出2人參與兩會(huì)宣傳活動(dòng),求這2人全是男生的概率.

附:

0.100

0.050

0.010

0.001

2.706

3.841

6.635

10.828

, .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】,設(shè)函數(shù).

1存在,使得的最大值,求取值范圍;

2任意成立時(shí),的最大值為1,取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】定義在上的單調(diào)遞減函數(shù),對任意都有,

(Ⅰ)判斷函數(shù)的奇偶性,并證明之;

(Ⅱ)若對任意,不等式為常實(shí)數(shù))都成立,求的取值范圍;(Ⅲ)設(shè), , ,

, ,比較的大小并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

(1)若,求的值;

(2)若存在,使函數(shù)的圖像在點(diǎn)和點(diǎn)處的切線互相垂直,求的取值范圍;

(3)若函數(shù)在區(qū)間上有兩個(gè)極值點(diǎn),則是否存在實(shí)數(shù),使對任意的恒成立?若存在,求出的取值范圍,若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,我海監(jiān)船在島海域例行維權(quán)巡航,某時(shí)刻航行至處,此時(shí)測得其東北方向與它相距32海里處有一外國船只,且島位于海監(jiān)船正東海里處.

(1)求此時(shí)該外國船只與島的距離;

(2)觀測中發(fā)現(xiàn),此外國船只正以每小時(shí)8海里的速度沿正南方向航行,為了將該船攔截在離24海里處,不讓其進(jìn)入24海里內(nèi)的海域,試確定海監(jiān)船的航向,并求其速度的最小值.(參考數(shù)據(jù):

查看答案和解析>>

同步練習(xí)冊答案