15.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{^{2}}$=1(a>b>0)的離心率為$\frac{\sqrt{3}}{2}$,點P是橢圓上任意一點,F(xiàn)1、F2分別是橢圓的左右焦點,△PF1F2的面積最大值為$\sqrt{3}$.
(Ⅰ)求橢圓C的方程;
(Ⅱ)從圓x2+y2=16上一點P向橢圓C引兩條切線,切點分別為A,B,當(dāng)直線AB分別與x軸、y軸交于M、N兩點時,求|MN|的最小值.

分析 (1)由題意可得:$\frac{1}{2}×2cb$=$\sqrt{3}$,e=$\frac{c}{a}$=$\frac{\sqrt{3}}{2}$,a2=b2+c2,解得即可得出.
(2)設(shè)點P(x0,y0)為圓x2+y2=16上一點,PA,PB為橢圓C:$\frac{{x}^{2}}{4}$+y2=1的切線,切點A(x1,y1),B(x2,y2).
可得弦AB所在直線方程為$\frac{x{x}_{0}}{4}+y{y}_{0}$=1.可得M$(0,\frac{1}{{y}_{0}})$,N$(\frac{4}{{x}_{0}},0)$,于是|MN|2=$\frac{16}{{x}_{0}^{2}}$+$\frac{1}{{y}_{0}^{2}}$=$(\frac{16}{{x}_{0}^{2}}+\frac{1}{{y}_{0}^{2}})$×$\frac{{x}_{0}^{2}+{y}_{0}^{2}}{16}$=$\frac{1}{16}(\frac{{x}_{0}^{2}}{{y}_{0}^{2}}+\frac{16{y}_{0}^{2}}{{x}_{0}^{2}}+17)$,利用基本不等式的性質(zhì)即可得出.

解答 解:(1)由題意可得:$\frac{1}{2}×2cb$=$\sqrt{3}$,e=$\frac{c}{a}$=$\frac{\sqrt{3}}{2}$,a2=b2+c2,解得a=2,b=1.
∴橢圓C方程為:$\frac{{x}^{2}}{4}$+y2=1.
(2)設(shè)點P(x0,y0)為圓x2+y2=16上一點,PA,PB為橢圓C:$\frac{{x}^{2}}{4}$+y2=1的切線,
切點A(x1,y1),B(x2,y2).
∴弦AB所在直線方程為$\frac{x{x}_{0}}{4}+y{y}_{0}$=1.
∴M$(0,\frac{1}{{y}_{0}})$,N$(\frac{4}{{x}_{0}},0)$,
∴|MN|2=$\frac{16}{{x}_{0}^{2}}$+$\frac{1}{{y}_{0}^{2}}$=$(\frac{16}{{x}_{0}^{2}}+\frac{1}{{y}_{0}^{2}})$×$\frac{{x}_{0}^{2}+{y}_{0}^{2}}{16}$=$\frac{1}{16}(\frac{{x}_{0}^{2}}{{y}_{0}^{2}}+\frac{16{y}_{0}^{2}}{{x}_{0}^{2}}+17)$≥$\frac{1}{6}(17+2\sqrt{16•\frac{{x}_{0}^{2}}{{y}_{0}^{2}}×\frac{{y}_{0}^{2}}{{x}_{0}^{2}}})$=$\frac{25}{16}$.
當(dāng)且僅當(dāng)${x}_{0}^{2}$=$\frac{64}{5}$,${y}_{0}^{2}$=$\frac{16}{5}$時取等號,
∴|MN|$≥\frac{5}{4}$,|MN|的最小值為$\frac{5}{4}$.

點評 本題考查了橢圓的標(biāo)準(zhǔn)方程及其性質(zhì)、基本不等式的性質(zhì)、橢圓的切線方程,考查了推理能力與計算能力,屬于難題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.在△ABC中,a,b,c分別為角A、B、C所對的邊,且滿足3=b2-c2,又sinBcosC=2cosBsinC,則邊長a的值為3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.在等腰梯形ABCD中,AD∥BC,AB=AD=$\frac{1}{2}$BC=a,E是BC的中點,將△BAE沿著AE翻折成△B1AE,使平面B1AE⊥平面AECD.

(Ⅰ)若F為B1D的中點,求證:B1E∥平面ACF;
(Ⅱ)求平面ADB1與平面ECB1所成二面角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.設(shè)平面直角坐標(biāo)系的原點為O,直線l的方程為$\left\{\begin{array}{l}{x=2-t}\\{y=\sqrt{3}+t}\end{array}\right.$(t為參數(shù)),以O(shè)為極點,x軸正方向為極軸正方向建立極坐標(biāo)系,兩坐標(biāo)系的單位長度相等.動點M(ρ,θ)(ρ>0)且ρ=4cos(θ-$\frac{π}{3}$).
(1)求直角坐標(biāo)系下點M的軌跡C;
(2)求直線l被C截得的線段的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知拋物線C:x2=4y的焦點為F,過點F作直線l交拋物線C于A、B兩點;橢圓E的中心在原點,焦點在x軸上,點F是它的一個頂點,且其離心率e=$\frac{{\sqrt{3}}}{2}$.
(1)求橢圓E的方程;
(2)設(shè)直線l的斜率為k,經(jīng)過A、B兩點分別作拋物線C的切線l1、l2,若切線l1與l2相交于點M.當(dāng)k變化時,點M的縱坐標(biāo)是否為定值?若是,求出這個定值;否則,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.某校對數(shù)學(xué)、物理兩科進行學(xué)業(yè)水平考前輔導(dǎo),輔導(dǎo)后進行測試,按照成績(滿分均為100分)劃分為合格(成績大于或等于70分)和不合格(成績小于70分).現(xiàn)隨機抽取兩科各100名學(xué)生的成績統(tǒng)計如下:
成績(單位:分)[50,60)[60,70)[70,80)[80,90)[90,100]
數(shù)學(xué)81240328
物理71840296
(1)試分別估計該校學(xué)生數(shù)學(xué)、物理合格的概率;
(2)設(shè)數(shù)學(xué)合格一人可以贏得4小時機器人操作時間,不合格一人則減少1小時機器人操作時間;物理合格一人可以贏得5小時機器人操作時間,不合格一人則減少2小時機器人操作時間.在(1)的前提下,
(i)記X為數(shù)學(xué)一人和物理一人共同贏得的機器人操作時間(單位:小時)總和,求隨機變量X的分布列和數(shù)學(xué)期望;
(ii)隨機抽取4名學(xué)生,求這四名學(xué)生物理考前輔導(dǎo)后進行測試所贏得的機器人操作時間不少于13小時的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2016-2017學(xué)年安徽六安一中高一上國慶作業(yè)二數(shù)學(xué)試卷(解析版) 題型:解答題

已知的圖象過點,且.

(1)求的解析式;

(2)已知,求函數(shù)上的最小值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知函數(shù)f(x)=ax2+x-lnx,(a>0).
(Ⅰ)求f(x)的單調(diào)區(qū)間;
(Ⅱ)設(shè)f(x)極值點為x0,若存在x1,x2∈(0,+∞),且x1≠x2,使f(x1)=f(x2),求證:x1+x2>2x0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.如圖,某簡單幾何體的一個面ABC內(nèi)接于圓M,AB是圓M的直徑,CF∥BE,BE⊥平面ABC,且AB=2,AC=1,BE+CF=7.
(Ⅰ)求證:AC⊥EF:
(Ⅱ)當(dāng)CF為何值時,平面AEF與平面ABC所成的銳角取得最小值?

查看答案和解析>>

同步練習(xí)冊答案