如圖,已知橢圓的長軸為AB,過點(diǎn)B的直線l與x軸垂直,直線(2-k)x-(1+2k)y+(1+2k)=0(k∈R)所經(jīng)過的定點(diǎn)恰好是橢圓的一個頂點(diǎn),且橢圓的離心率
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)設(shè)P是橢圓上異于A、B的任意一點(diǎn),PH⊥x軸,H為垂足,延長HP到點(diǎn)Q使得HP=PQ,連接AQ并延長交直線l于點(diǎn)M,N為MB的中點(diǎn),試判斷直線QN與以AB為直徑的圓O的位置關(guān)系。
解:(1)將
整理得,
解方程組得直線所經(jīng)過的定點(diǎn)為(0,1),
∴b=1,
由離心率,得a=2,
∴橢圓的標(biāo)準(zhǔn)方程為;
(2)設(shè),則,

,
,
∴Q點(diǎn)在以O(shè)為圓心,2為半徑的圓上,即Q點(diǎn)在以AB為直徑的圓O上。又A(-2,0),∴直線l的方程為
令x=2,得
又B(2,0),N為MB的中點(diǎn),
,


,
,
∴直線QN與以AB為直徑的圓O相切。
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2003•北京)如圖,已知橢圓的長軸A1A2與x軸平行,短軸B1B2在y軸上,中心M(0,r)(b>r>0
(Ⅰ)寫出橢圓方程并求出焦點(diǎn)坐標(biāo)和離心率;
(Ⅱ)設(shè)直線y=k1x與橢圓交于C(x1,y1),D(x2,y2)(y2>0),直線y=k2x與橢圓次于G(x3,y3),H(x4,y4)(y4>0).求證:
k1x1x2
x1+x2
=
k1x3x4
x3+x4
;
(Ⅲ)對于(Ⅱ)中的在C,D,G,H,設(shè)CH交x軸于P點(diǎn),GD交x軸于Q點(diǎn),求證:|OP|=|OQ|
(證明過程不考慮CH或GD垂直于x軸的情形)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(03年北京卷理)(15分)

如圖,已知橢圓的長軸軸平行,短軸軸上,中心

(Ⅰ)寫出橢圓方程并求出焦點(diǎn)坐標(biāo)和離心率;

(Ⅱ)設(shè)直線與橢圓交于),直線與橢圓次于).求證:;

(Ⅲ)對于(Ⅱ)中的在,設(shè)軸于點(diǎn),軸于點(diǎn),求證:(證明過程不考慮垂直于軸的情形)

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,已知橢圓的長軸,離心率為坐標(biāo)原點(diǎn),過的直線軸垂直,是橢圓上異于的任意一點(diǎn),為垂足,延長,使得,連接并延長交直線的中點(diǎn)

(1)求橢圓方程并證明點(diǎn)在以為直徑的圓

(2)試判斷直線與圓的位置關(guān)系

 


查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年黑龍江高三上期末考試文科數(shù)學(xué)試卷(解析版) 題型:解答題

(本小題滿分12分)如圖,已知橢圓的長軸為,過點(diǎn)的直線軸垂直,直線所經(jīng)過的定點(diǎn)恰好是橢圓的一個頂點(diǎn),且橢圓的離心率

(1)求橢圓的標(biāo)準(zhǔn)方程;

(2)設(shè)是橢圓上異于的任意一點(diǎn),軸,為垂足,延長到點(diǎn)使得,連接并延長交直線于點(diǎn),的中點(diǎn).試判斷直線與以為直徑的圓的位置關(guān)系.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年黑龍江省哈爾濱市高三第一次模擬考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:解答題

(本題滿分12分)

如圖,已知橢圓的長軸為,過點(diǎn)的直線軸垂直,直線所經(jīng)過的定點(diǎn)恰好是橢圓的一個頂點(diǎn),且橢圓的離心率

(1)求橢圓的標(biāo)準(zhǔn)方程;

(2)設(shè)是橢圓上異于的任意一點(diǎn),軸,為垂足,延長到點(diǎn)使得,連接并延長交直線于點(diǎn),的中點(diǎn).試判斷直線與以為直徑的圓的位置關(guān)系.

 

 

查看答案和解析>>

同步練習(xí)冊答案