【題目】已知,.
(1)解不等式;
(2)若函數,其中為奇函數,為偶函數,若不等式對任意的恒成立,求實數t的取值范圍.
科目:高中數學 來源: 題型:
【題目】在△ABC中,a,b,c分別為內角A,B,C的對邊,且asin B=-bsin.
(1)求A;
(2)若△ABC的面積S=c2,求sin C的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數,(,,)的部分圖像如圖所示.
(1)求函數的解析式及圖像的對稱軸方程;
(2)把函數圖像上點的橫坐標擴大到原來的2倍(縱坐標不變),再向左平移個單位,得到函數的圖象,求關于x的方程在時所有的實數根之和.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】[選修4—4:坐標系與參數方程]
在直角坐標系中,已知曲線的參數方程為 為參數以原點為極點x軸正半軸為極軸建立極坐標系,直線的極坐標方程為:,直線的極坐標方程為.
(Ⅰ)寫出曲線的極坐標方程,并指出它是何種曲線;
(Ⅱ)設與曲線交于兩點,與曲線交于兩點,求四邊形面積的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】類似于平面直角坐標系,定義平面斜坐標系:設數軸、的交點為,與、軸正方向同向的單位向量分別是、,且與的夾角為,其中,由平面向量基本定理:對于平面內的向量,存在唯一有序實數對,使得,把叫做點在斜坐標系中的坐標,也叫做向量在斜坐標系中的坐標,記為,在平面斜坐標系內,直線的方向向量、法向量、點方向式方程、一般式方程等概念與平面直角坐標系內相應概念以相同方式定義,如時,方程表示斜坐標系內一條過點,且方向向量為的直線.
(1)若,,,求;
(2)若,已知點和直線;
①求的一個法向量;
②求點到直線的距離.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知A(4,0)、B(1,0),動點M滿足|AM|=2|BM|.
(1)求動點M的軌跡C的方程;
(2)直線l:x+y=4,點N∈l,過N作軌跡C的切線,切點為T,求NT取最小時的切線方程.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如今我們的互聯網生活日益豐富,除了可以很方便地網購,網絡外賣也開始成為不少人日常生活中不可或缺的一部分.某市一調查機構針對該市市場占有率最高的甲、乙兩家網絡外賣企業(yè)(以下簡稱外賣甲,外賣乙)的經營情況進行了調查,調查結果如表:
1日 | 2日 | 3日 | 4日 | 5日 | |
外賣甲日接單(百單) | 5 | 2 | 9 | 8 | 11 |
外賣乙日接單(百單) | 2.2 | 2.3 | 10 | 5 | 15 |
(1)據統計表明,與之間具有線性相關關系.
(ⅰ)請用相關系數加以說明:(若,則可認為與有較強的線性相關關系(值精確到0.001))
(ⅱ)經計算求得與之間的回歸方程為.假定每單外賣業(yè)務企業(yè)平均能獲純利潤3元,試預測當外賣乙日接單量不低于2500單時,外賣甲所獲取的日純利潤的大致范圍:(值精確到0.01)
(2)試根據表格中這五天的日接單量情況,從平均值和方差角度說明這兩家外賣企業(yè)的經營狀況.
相關公式:相關系數,
參考數據:
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知動點滿足: .
(1)求動點的軌跡的方程;
(2)設過點的直線與曲線交于兩點,點關于軸的對稱點為(點與點不重合),證明:直線恒過定點,并求該定點的坐標.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com