對于函數(shù)f(x)=ax2+(b+1)x+b-2(a≠0),若存在實(shí)數(shù)x0,使f(x0)=x0成立,則稱x0為f(x)的不動點(diǎn).
(1)當(dāng)a=2,b=-2時,求f(x)的不動點(diǎn).
(2)若對于任何實(shí)數(shù)b,函數(shù)f(x)恒有兩個相異的不動點(diǎn),求實(shí)數(shù)a的取值范圍.
分析:(1)設(shè)x為不動點(diǎn),則有2x2-x-4=x,變形為2x2-2x-4=0,解方程即可.
(2)將f(x)=x轉(zhuǎn)化為ax2+bx+b-2=0.由已知,此方程有相異二實(shí)根,則有△x>0恒成立求解;
解答:解∵f(x)=ax2+(b+1)x+b-2(a≠0),
(1)當(dāng)a=2,b=-2時,f(x)=2x2-x-4.
設(shè)x為其不動點(diǎn),即2x2-x-4=x.
則2x2-2x-4=0.∴x1=-1,x2=2.即f(x)的不動點(diǎn)是-1,2.
(2)由f(x)=x得:ax2+bx+b-2=0.
由已知,此方程有相異二實(shí)根,△x>0恒成立,
即b2-4a(b-2)>0.
即b2-4ab+8a>0對任意b∈R恒成立.
∴△b<0.,
∴16a2-32a<0,
∴0<a<2.
點(diǎn)評:本題主要考查的知識點(diǎn)是二次函數(shù)的性質(zhì),方程的解法,方程根的情況以及垂直平分線定義的應(yīng)用.其中根據(jù)已知中的新定義,構(gòu)造滿足條件的方程是解答本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

對于函數(shù)f(x)=a-
22x+1
(a∈R)
(1)求函數(shù)f(x)的定義域和值域;
(2)探索函數(shù)f(x)的單調(diào)性,并寫出探索過程;
(3)是否存在實(shí)數(shù)a使函數(shù)f(x)為奇函數(shù)?若存在求出a的值,不存在請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

對于函數(shù)f(x)=a-
22x+1
(a∈R)

(1)探索函數(shù)f(x)的單調(diào)性
(2)是否存在實(shí)數(shù)a使函數(shù)f(x)為奇函數(shù),若存在,求出a的取值;若不存在,說明理由?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

對于函數(shù)f(x)=a-
2•2x2x+1
(a∈R).
(Ⅰ)判斷函數(shù)f(x)的單調(diào)性并證明;
(Ⅱ) 是否存在實(shí)數(shù)a,使得f(x)為奇函數(shù),并證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

對于函數(shù)f(x)=a-
2•2x2x+1
(a∈R).
(Ⅰ)判斷函數(shù)f(x)的單調(diào)性并證明;
(Ⅱ)是否存在實(shí)數(shù)a,使得f(x)為奇函數(shù),并證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

對于函數(shù)f(x)=a x2+(b+1)x+b-2(a≠0),若存在實(shí)數(shù) x0,使f( x0)=x0成立,則稱 x0為f(x)的不動點(diǎn)
(1)當(dāng)a=2,b=-2時,求f(x)的不動點(diǎn);
(2)若對于任何實(shí)數(shù)b,函數(shù)f(x)恒有兩個相異的不動點(diǎn),求實(shí)數(shù)a的取值范圍;
(3)在(2)的條件下判斷直線L:y=ax+1與圓(x-2)2+(y+2)2=4 a2+4的位置關(guān)系.

查看答案和解析>>

同步練習(xí)冊答案